
MULTICORE SPECIFICATION GENERATION SYSTEM

BY

NNADI HILLARY SUNDAY

PG/MSC/12/62672

BEING A M.SC. PROJECT SUBMITTED IN PARTIAL

FULFILMENT FOR THE AWARD OF MASTER OF

SCIENCE DEGREE IN COMPUTER SCIENCE OF

UNIVERSITY OF NIGERIA, NSUKKA

SUPERVISOR: DR. M.C. OKORONKWO

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF NIGERIA, NSUKKA

NOVEMBER, 2014

i

TITLE PAGE

MULTICORE SPECIFICATION GENERATION SYSTEM

ii

APPROVAL PAGE

This project report is approved for submission.

Dr M.C OKORONKWO

Supervisor

iii

CERTIFICATION PAGE

I hereby declare that the work presented herein was done by me, and not by third party.

Should I be convicted of having cheated in this work, I shall accept the verdict of the

university.

NNADI HILLARY SUNDAY

PG/MSC/12/62672

iv

DEDICATION

I dedicate this work to God almighty and to those who believed in me.

v

ACKNOWLEDGMENTS

I am most indebted to my great supervisor Dr. M.C. Okoronkwo for his fatherly contribution

and thorough supervision of my work. I am so grateful to him for the knowledge he impacted

on me during my course work. He has been a wonderful teacher/lecturer in the department.

I am so grateful to my brothers, sisters and friends who have being there for me. I thank them

all for supporting me throughout my time in the university. They have made significant

contribution for me both financially and materially.

I acknowledge the efforts of Dr. Atabong, Prof. Bakpo F.S, Dr. Ebem and Sultan who helped

me in so many ways to see the success of this work.

Finally, special thanks to God almighty who has being keeping me alive till this moment I

say may your name be glorified.

vi

ABSTRACT

Performance analysis is the task of monitoring the behaviour of a program execution. The

main goal is to find out the possible adjustments that might be done in order to improve the

performance of the computer system in use. To be able to get that improvement, it is

necessary to find the different causes/contributors of overhead. Today, we are already in the

multicore era, but there is a gap between the level of development of the two main divisions

of multicore technology (hardware and software).

This project is focused on the issues concerning performance analysis, tuning of applications

running specifically in a shared memory system and development of application that

automatically extract system characteristics and configurations. This application is developed

using OODM and implemented using C# programming language and can be used on any

windows Operating System. The application developed from this project critically analyses

multicore system, determine various causes of overhead in multicore environment,extracts

system parameters and present various optimization strategies.

vii

TABLE OF CONTENTS

Title Page ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …i

Approval Page ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …ii

Certification Page ….. ….. ….. ….. ….. ….. ….. ….. ….. ...iii

Dedication ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ...iv

Acknowledgments ….. ….. ….. ….. ….. ….. ….. ….. ….. …v

Abstract ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ...vi

Table of Contents ….. ….. ….. ….. ….. ….. ….. ….. ….. ..vii

List of Figures ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …x

List of tables ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ...xi

Chapter 1: Introduction

1.1 Introduction ….. ….. ….. ….. ….. ….. ….. ….. ….. …1

1.2 Statement of Problem ….. ….. ….. ….. ….. ….. ….. ….. …4

1.3 Objective of the Study….. ….. ….. ….. ….. ….. ….. …..5

1.4 Significance of Study ….. ….. ….. ….. ….. ….. ….. ….. …..5

1.5 Scope of Study ….. ….. ….. ….. ….. ….. ….. ….. …..6

1.6 Definition of Terms ….. ….. ….. ….. ….. ….. ….. ….. …..6

Chapter 2: Literature Review

2.0 Introduction ….. ….. ….. ….. ….. ….. ….. …. …. ….7

2.1 Theoritical Background ….. ….. ….. ….. ….. ….. ….. ….7

2.2 Review of Related Literature ….. ….. ….. ….. ….. ….. ….. ….10

2.2.1 Multicore Performance Analysis ….. ….. ….. ….. ….. ….. …..11

2.2.2 Multicore CPU performance evaluation ….. ….. ….. ….. ….. …..11

2.2.3 Factors Affects the Performance ….. ….. ….. ….. ….. ….. …..12

2.2.4 Multicore CPU Benchmarking ….. ….. ….. ….. ….. ….. …..13

2.2.5 Multicore CPU power benchmarks ….. ….. ….. ….. ….. ….. …..14

2.2.6 Example of Multicore CPU Performance Analysis ….. ….. ….. ….. …..14

2.2.7 Heterogeneity Vs Homogeneity ….. ….. ….. ….. ….. ….. …..16

2.2.8 Memory Hierarchy and interconnection ….. ….. ….. ….. ….. …..17

2.2.9 Multicores Optimization ….. ….. ….. ….. ….. ….. ….. …..20

Chapter 3: System Analysis and Design

3.0 Introduction ….. ….. ….. ….. ….. ….. ….. ….. ….. …..22

3.1 Description of Existing System….. ….. ….. ….. ….. ….. ….. …..23

viii

3.2 The Proposed System ….. ….. ….. ….. ….. ….. ….. ….. …..23

3.3 Design Methodology ….. ….. ….. ….. ….. ….. ….. ….. …..24

3.3.1 Object-Oriented Analysis and Design….. ….. ….. ….. ….. ….. …..24

3.4 Design Tool ….. ….. ….. ….. ….. ….. ….. ….. ….. …..24

3.4.1 Use case diagram ….. ….. ….. ….. ….. ….. ….. ….. …..26

3.4.2 Class Diagram ….. ….. ….. ….. ….. ….. ….. ….. ….. …..27

3.5 Data Specification ….. ….. ….. ….. ….. ….. ….. ….. ….. …..28

Chapter 4: System Implementation

4.0 Introduction ….. ….. ….. ….. ….. ….. ….. ….. ….. …..29

4.1 Choice of Development Environment….. ….. ….. ….. ….. ….. …..29

4.1.1 Visual Studio .NET ….. ….. ….. ….. ….. ….. ….. ….. …..29

4.1.2 Choice of Programming Language ….. ….. ….. ….. ….. ….. …..30

4.2 Implementation Architecture ….. ….. ….. ….. ….. ….. ….. …..30

4.2.1 Main interface Implementation ….. ….. ….. ….. ….. ….. …..34

4.2.2 Input Implementation ….. ….. ….. ….. ….. ….. ….. ….. …..35

4.2.3 Output Implementation ….. ….. ….. ….. ….. ….. ….. …..35

4.3 Software Testing ….. ….. ….. ….. ….. ….. ….. ….. …..36

4.4 Screen Shots of Demos …. …. …. …. …. …. …. …..36

4.5 Documentation ….. ….. ….. ….. ….. ….. ….. ….. …..45

4.5.1 Hardware Requirement ….. ….. ….. ….. ….. ….. ….. …..45

4.5.2 Software Requirement….. ….. ….. ….. ….. ….. ….. ….. …..45

4.5.3 User Manual ….. ….. ….. ….. ….. ….. ….. ….. ….. …..45

4.5.4 Source Code Listing ….. ….. ….. ….. ….. ….. ….. ….. …..46

Chapter 5: Summary and Conclusion

5.0 Summary ….. ….. ….. ….. ….. ….. ….. ….. ….. …..47

5.1 Conclusion ….. ….. ….. ….. ….. ….. ….. ….. ….. …..47

5.2 Recommendations ….. ….. ….. ….. ….. ….. ….. ….. …..48

References ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..49

Appendix A: AS class source code ….. ….. ….. ….. ….. ….. ….. …..51

Appendix B: AudioControl source code ….. ….. ….. ….. ….. ….. …..52

Appendix C: CPU control source code ….. ….. ….. ….. ….. ….. …..53

Appendix D: Main form source code ….. ….. ….. ….. ….. ….. ….. …..55

Appendix E: Graphics control source code ….. ….. ….. ….. ….. ….. …..62

ix

Appendix F: HardwareInfo class source code….. ….. ….. ….. ….. ….. …..63

Appendix G: Hard Drive control source code….. ….. ….. ….. ….. ….. …..72

Appendix H: Motherboard Control source code ….. ….. ….. ….. ….. …..74

Appendix I: Network Control source code ….. ….. ….. ….. ….. ….. …..76

Appendix J: Optical drives control source code ….. ….. ….. ….. ….. …..78

Appendix K: Operating system control source code ….. ….. ….. ….. ….. …..79

Appendix L: Performance control source code ….. ….. ….. ….. ….. …..81

Appendix M: Peripherals control source code ….. ….. ….. ….. ….. …..84

Appendix N: RAM control source code ….. ….. ….. ….. ….. ….. …..86

Appendix O: Summary control source code ….. ….. ….. ….. ….. ….. …..87

x

LIST OF FIGURES

Fig. 1.1. An example of a dual core MCP (Multicore Processor) structure.….. ….. …..4

Fig. 2.1 shows the result of the servers based on Intel multicore CPU run times ….. …..15

Fig. 2.2 shows the increasing of power consumption due to the number of VMs ….. …..16

Fig. 2.3. A basic homogenous Chip Multiprocessor ….. ….. ….. ….. ….. …..17

Fig. 2.4. An example of a heterogeneous Chip Multiprocessor ….. ….. ….. …..17

Fig. 2.5 Memory access hierarchy organization of general processors units ….. ….. …..18

Fig. 2.6-7. Estimation of speed accesses scale in a processor unit ….. ….. ….. …..19

Fig. 3.1: AutoSpec Use Case Diagram ….. ….. ….. ….. ….. ….. …..26

Fig. 3.2: Class diagram ….. ….. ….. ….. ….. ….. ….. ….. …..27

Fig. 3.3: Save Specification as text file….. ….. ….. ….. ….. ….. ….. …..33

Fig. 4.1: System Block Diagram ….. ….. ….. ….. ….. ….. ….. …..33

Fig. 4.2: System flowchart ….. ….. ….. ….. ….. ….. ….. ….. …..34

Fig. 4.3: Auto Spec summary screenshot ….. ….. ….. ….. ….. ….. …..37

Fig. 4.4: Operating System details screenshot ….. ….. ….. ….. ….. …..38

Fig. 4.5: CPU details screenshot ….. ….. ….. ….. ….. ….. ….. …..39

Fig. 4.6: RAM details screenshot ….. ….. ….. ….. ….. ….. ….. …..39

Fig. 4.7: Motherboard details screenshot ….. ….. ….. ….. ….. ….. …..40

Fig. 4.8: Graphics details screen ….. ….. ….. ….. ….. ….. ….. …..41

Fig. 4.9: Hard Drives details screenshot ….. ….. ….. ….. ….. ….. …..41

Fig. 4.10: Optical Drives details screenshot ….. ….. ….. ….. ….. ….. …..42

Fig. 4.11: Audio details screenshot ….. ….. ….. ….. ….. ….. ….. …..43

Fig. 4.12: Peripheral details screenshot ….. ….. ….. ….. ….. ….. …..43

Fig. 4.13: Network details screenshot ….. ….. ….. ….. ….. ….. ….. …..44

Fig. 4.14: Performance details screenshot ….. ….. ….. ….. ….. …. …..44

xi

LIST OF TABLES

Table 4.1: List of output screen controls ….. ….. ….. ….. ….. ….. ..35

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

With computers playing an increasingly critical role in our day-to-day lives, it is important to

know their components and how each works and of what impact they impose on performance of

the computer system.

According to (Arnold, 1994) Computer performance is characterised by the amount of useful

work accomplished by a computer system compared to time and resources used. Depending on

the context, good computer performance is dependent on the available system resources. Most

computer users do not know the system specification, they lack the knowledge of conventional

way of extracting system parameters but with the computerised system in this thesis (Otherwise

known as Autospec) every computer users will be able to determine the system configuration by

installing and running the software.

The System development can be likened to building a house, this demands adequate planning

and preparation in order to meet the objectives of the proposed design.

The parameters or the resources that are of interest in our analysis include the followings:

� Summary

� Operating system

� CPU

� RAM

� Hard drives

� Optical drives

� Motherboard

� Graphics

� Network

� Audio

� Peripheral

� Performance

2

Performance analysis is the task of investigating the behaviour of program execution (Mario,

2009). The main aim is to find out the possible adjustments that might be done in order enhance

the performance of computer system. Besides, the hardware architecture and software platform

(operating system) where a program is executed has impact on its performance. Workload

characterization involves studying the user and machine environment, observing key

characteristics, and developing a workload model that can be used repeatedly. Once a workload

model is available, the effect of changes in the workload and system can be easily evaluated by

changing the parameters of the model. This can be achieved by using compiler directives such

OpenMP multithread application. In addition, workload characterization can help you to

determine what's normal, prepare a baseline for historical comparison, comply with management

reporting, and identify candidates for optimization.

Presently, multicore processors chips are being introduced in almost all the areas where a

computer is needed. For example, many laptop computers have a dual core processor inside.

High Performance Computing (HPC) address different issues, one of them is the exploitation of

the capacities of multicore architecture(Mario, 2009).

Presently, multicore processors chips are being introduced in almost all the areas where a

computer is needed. For example, many laptop computers have a dual core processor inside.

High Performance Computing (HPC) address different issues, one of them is the exploitation of

the capacities of multicore architecture.

Performance analysis and optimization is a field of HPC responsible for analysing the behaviour

of applications that perform big amount of computation. Some applications that perform high

volume of computations require analysing and tuning. Therefore, in order to achieve better

performances it is necessary to find the different causes of overhead.

There are a considerable number of studies related to the performance analysis and tuning of

applications for supercomputing, but there are relatively few studies addressed specifically to

applications running on a multicore environment.

A multicore system is composed of two or more independent cores (or CPUs). The cores are

typically integrated onto a single circuit die (known as a chip multiprocessor or CMP), or they

may be integrated onto multiple dies in a single chip package.

3

This thesis examines the issues involved in the performance analysis and tuning of applications

running specifically in a shared Memory and the development of a computerized system for

retrieving systems specification for possible changes. Multicore hardware is relatively more

mature than multicore software, from that reality arises the necessity of this research. We would

like to emphasize that this is an active area of research, and there are only some early results in

the academic and industrial worlds in terms of established standards and technology, but much

more will evolve in the years to come.

Several years, the computer technology has been going through a phase of many developments.

Based on Moore law, the speed of processors has been increasing very fast. Every new

generation of micro-processor comes with clock rate usually twice or even much faster than the

previous one. That increase in clock frequency drove increases in the processors performance,

but at the same time, the difference between the processors speed and memory speed was

increasing. Such gap was temporarily solved by instruction level parallelism (ILP) (Faxen et al,

2008). Exploiting ILP means executing instructions that occur close to each other in the stream

of instructions through the processor in parallel. Though it appeared very soon that more and

more cycles are being spent not in the processor core execution, but in the memory subsystem

which includes the multilevel caching structure, and the so-called Memory Wall, problem started

to evolve quite significantly due to the fact that the increase in memory speed didn’t match that

of processor cores.

Very soon a new direction for increasing the overall performance of computer systems had been

proposed, namely changing the structure of the processor subsystem to utilize several processor

cores on a single chip. These new computer architectures received the name of Chip Multi

Processors (CMP) and provided increased performance for new generation of systems, while

keeping the clock rate of individual processors cores at a reasonable level. The result of this

architectural change is that it became possible to provide further improvements in performance

while keeping the power consumption of the processor subsystem almost constant, the trend

which appears essential not only to power sensitive market segments such as embedded systems,

but also to computing server farms which suffer power consumption/dissipation problems as

well.

4

Some of the advantages that shared memory CMP may offer are:

• Direct access to data through shared memory address space.

• Greater latency hiding mechanism.

• MP’s appears to lower power and cooling requirements per FLOP.

There are two main types of CMP

� There are those that contain a few very powerful cores, essentially the same core one would

put in a single core processor. Examples include AMD Athlons, Intel Core 2, IBM Power 6

and so on.

� There are those systems that trade single core performance for number of cores, limiting core

area and power. Examples include the Tilera 64, the Intel Larrabee and the Sun UltraSPARC

T1 and T2 (also known as Niagara 1-2). Figure 1.1 shows the basic structure of a dual core

processor

Fig. 1.1. An example of a dual core MCP (Multicore Processor) structure.

1.2 Statement of Problem

Multicore hardware technology is advancing very fast. There is a gap between the level of

development of the multicore hardware and multicore software technology. Multithread

applications may not always take proper advantage of multicore hardware architecture,

especially when a user of such system lack the in depth knowledge of the system parameters.

5

Most people can name processor, maybe how much RAM it has and how big the hard drive is

through the stickers or tags on the PC and a user can also get these basic information by right

clicking my computer and then clicking on properties but these miss out lots of information that

you need to know about your system such as graphic card, motherboard type, cache type and

temperature of some hardware etc

1.3 Objective of the Study

The main objectives of this work are:

� To develop an application that would help all the computer user to automatically extract

system parameters

� Determine the main causes of overhead on the multicore environment.

� To apply the necessary measures/changes to make a better use of the hardware resources and

therefore obtain a better performance.

1.4 Significance of Study

Autospec is a software that acts as a sticker for your PC. It analyses and shows the statistics on

every piece of hardware in your computer. Including CPU, Motherboard, RAM, Graphics card,

Operating systems, Hard Disks, Optical Drives, Audio support. Additionally Autospec adds the

temperatures of your different components, so you can easily see if there is a problem and also

an interface for checking for software updates.

It certainlyhelps any PC user especially novices in everyday computing life to Troubleshoot,

diagnosis, make replacement, control process and implement some settings etc.

6

1.5 Scope of Study

The multicore technology may be divided into two main categories, hardware and software. But

the application focuses on the hardware. The developed software will be able to extract the

systems specification in all multicore computer system running on windows Operating System.

1.6 Definition of Terms

MULTICORE: Multicore refers to an architecture in which a single physical processor

incorporates the core logic of more than one processor. A single integrated circuit is used to

package or hold these processors. These single integrated circuits are known as a die.

MULTITHREADING: is a type of execution model that allows multiple threads to exist within

the context of a process such that they execute independently but share their process resources. A

thread maintains a list of information relevant to its execution, including the priority schedule,

exception handlers, a set of CPU registers, and stack state in the address space of its hosting

process.

TUNNING: is the improvement of systemperformance by varying parameters such as Processor,

secondary storage devices, main memory and application modification.

APPLICATION PATHERN: This is a design pattern which covers useful architectural and code

design patterns that can lead to the creation of more maintainable and evolvable software.

OpenMP (Open Multi-Processing): is an API that supports multi-platform shared memory

multiprocessing programming in C, C++, and Fortran, on most processor architectures and

operating systems, including Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, and Windows.

COMPUTER PERFORMANCE: is characterized by the amount of useful work accomplished by

a computer system compared to the time and resources used

7

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

Multicore is the new trend in computer world. As technology advances more cores are built to

enhance system speed, functionality, efficiency and dependency. In the era of single processor,

most computers were slow and there was a heavy limitation to file processing and other data

manipulations. Dual core systems also produced undesirable power consumption and as result

alternative research has encouraged the production of multicore systems. System specification is

an area in which some average computer literates find difficult to handle. Many people don’t

know how to check their system configuration. This project presents a platform that will allow a

novice to perform such activity.

The various system specification categories have been listed earlier and we are more interested

on the technology used in developing them in this section.

2.1 Theoretical Background

AutoSpec is a software package developed in this project work to help analyse the configuration

of a computer system. The software makes life easier for users who may be clamouring to know

the stuff their system units are made up of. It takes above average computer literate to locate

where most of computer specification are hidden.

C# programming language was used to build this application. The system is actually a desktop

application meaning that it can be installed on any PC and ran as a standalone software. It is not

an internet based software in that no internet connection is needed to use it. The technology used

in this project work is based on system management feature of Microsoft .Net framework. This

program makes use of Windows Management Instrumentation (WMI) infrastructure to explore

the system properties. In .Net framework System.Management namespace handle anything

concerning system properties. Management Namespace provides access to a rich set of

management information and management events about the system, devices, and applications

instrumented to the Windows Management Instrumentation (WMI) infrastructure. Applications

and services can query for management information (such as how much free space is left on the

disk, what is the current CPU utilization, which database a certain application is connected to,

8

and much more), using classes derived from ManagementObjectSearcher and

ManagementQuery, or subscribe to a variety of management events using the

ManagementEventWatcher class. The accessible data can be from both managed and unmanaged

components in the distributed environment.

One powerful class in the System.Management namespace used in this project work is

ManagementObjectSearcher. It retrieves a collection of management objects based on a

specified query. This class is one of the more commonly used entry points to retrieving

management information. For example, it can be used to enumerate all disk drives, network

adapters, processes and many more management objects on a system, or to query for all network

connections that are up, services that are paused, and so on. When instantiated, an instance of

this class takes as input a WMI query represented in an ObjectQuery or its derivatives, and

optionally a ManagementScope representing the WMI namespace to execute the query in. It can

also take additional advanced options in an EnumerationOptions. When the Get () method on this

object is invoked, the ManagementObjectSearcher executes the given query in the specified

scope and returns a collection of management objects that match the query in a

ManagementObjectCollection. The ManagementObjectSearcher type exposes the following

members.

Constructors

 N a m e D e s c r i p t i o n

 ManagementObjectSearcher () I n i t i a l i z e s a n e w i n s t a n c e o f t h e M a n a g e m e n t O b j e c t S e a r c h e r c l a s s .

 ManagementObjectSearcher(ObjectQuery) I n i t i a l i z e s a n e w i n s t a n c e o f t h e M a n a g e m e n t O b j e c t S e a r c h e r c l a s s u s e d

 ManagementObjectSearcher(String) I n i t i a l i z e s a n e w i n s t a n c e o f t h e M a n a g e m e n t O b j e c t S e a r c h e r c l a s s

9

Methods

 N a m e D e s c r i p t i o n

 CreateObjRef Creates an object that contains all the relevant information required to generate

 Dispose () Releases all resources used by the Component. (Inherited from Component.)

Dispose(Boolean) Releases the unmanaged resources used by the Component and optionally releases the managed resources. (Inherited fromComponent.)

 Equals(Object) Determines whether the specified Object is equal to the current Object. (Inherited from Object.)

Finalize Releases unmanaged resources and performs other cleanup

 Get () Invokes the specified WMI query and returns the resulting collection.

 Get(ManagementOperationObserver) Invokes the WMI query asynchronously, and binds to a watcher to deliver the results.

Another important class used most times is ManagementClass class. It represents a Common

Information Model (CIM) management class. A management class is a WMI class such as

Win32_LogicalDisk, which can represent a disk drive, and Win32_Process, which represents a

process such as Notepad.exe. The members of this class enable you to access WMI data using a

specific WMI class path.

Constructors

 N a m e D e s c r i p t i o n

 ManagementClass () Initializes a new instance of the ManagementClass class. This is the default constructor.

 ManagementClass(ManagementPath) Initializes a new instance of the ManagementClass class. The class represents a Common Information.

 ManagementClass(String) Initializes a new instance of the ManagementClass class initialized

 ManagementClass(ManagementPath, ObjectGetOptions)Initializes a new instance of the ManagementClass

10

2.2 Review of Related Literature

2.2.1 Multicore Performance Analysis

In computer and semi-conductors industry Multicore CPU has become the standard for the

current era of processors development due to the significant level of performance it offers. With

the variety of multiple multicore architecture and different levels of performance, it becomes

imperative to compare the architectures of multicore to ensure that the performance aligns itself

with the expected specifications.

Moore's law of in-chip performance doubling is a standard for development in the computer and

semiconductor industry. Memory capacity and CPU speeds are two of the many digital electronic

devices believed by Moore's law to gain increased development approximately every 18 months.

Multicore CPUs have evolved in this process and have become a vital part of our daily life. They

are implemented in many devices, and their performance varies considerably by application. This

situation draws the attention of researchers to evaluate CPU performance carefully to obtain

higher performance at lower cost.

The high performance speed gained by multi-processors (dual core), produce uncontrollable high

power consumption, based on that, alternative research trends encouraged the production of

multicore CPUs in order to minimize power consumption, while simultaneously increasing the

high processing speed. The architecture of multicore CPUs is responsible for high speed

achieved by hungry applications with lower power consumption, each task is shared among the

cores.

Performance analysis is a criterion that defines the performance of a system, and it is necessary

at every stage of the computer system life-cycle, to ensure high performance at a given cost. The

need for performance analysis was derived by radical changes in a number of factors including;

11

i. Current computer user who is more demanding than computer users years ago.

ii. The popularity of computer technology, which is no longer a hidden fact, necessitated

inundation in the computer market of different computer manufactures, each differing in

performance. To be able to achieve improvement in multicore it is also necessary to find the

different causes of overhead(Mario, 2009). Such changes require performance analysis that meet

users need and help select a better alternative which provides higher performance at given cost

implementing trade-offs between what each technique provides and the required criteria in mind.

In review of related work we explored different ways used to evaluate multicore performance,

and the proper method for selecting a reliable evaluation techniques, metrics, and measure of

multicore CPUs. We looked at the techniques used to evaluate multicore CPUs and the

considerations that should observed when selecting the techniques to be used.

2.2.2 Multicore CPU performance evaluation

To evaluate the performance of multicore, we have to adopt a good evaluation technique; the

following are different techniques in use

� Analytical modelling

� Simulation

� Measurement.

Certain criterions are to be observed during multicore performance evaluation. To prove the

correctness of technique used we require the use of second evaluation technique. For instance, an

evaluation done with simulation should be validated using the second technique such as

analytical or measurement. The considerations for selecting the appropriate technique is listed

below as provided by (Jain, 1991).

� Stage of evaluation

� Time requirement

� Tools required

� Accuracy of result

12

� Cost of technique in use

� Saleability of the product

He stated that analytical modelling can be performed at any stage of the system life-cycle as it

requires less amounts of time than simulation and measurement because they both vary with

evaluation time, analytical modelling needs no tools for analysis, but it may give less accurate

results. Analytical cost less in terms of capital compared to the other techniques. Unfortunately

the saleability for such products with just analytical modelling performance result is low.

Other Metrics that are used in evaluating multicore CPUs performance

According to various authors as stated below, the following metrics are used;

� Memory bandwidth: the rate of data sustained from the CPU core to the RAM (Random

Access Memory) (Kayi etal, 2007) the CPU has a direct access to RAM.

� Throughput: this is the average rate of successful processes (Sharma, et al 2009).

According to (Monchiero etal, 2006).

� Execution time: The time needed to complete program execution, it could us be

referred to as the processing time.

� Energy: The power needed to run a program

� Memory latency: this is the time delay between the memory controller signalled the

memory module to access data from the RAM and the time the data become available for the

memory module, also known as CAS (Column Address Strobe) latency.

� Percentage of memory contention: the percentage among the cores trying to access the

RAM at the same time.

� Response time: The time that the user finishes the request and the time the system starts a

response.

2.2.3 Factors Affects the Performance

Factors are the performance parameters that we want to study to see their effects on the system.

Factors also depend upon the required performance needed to utilize the CPU and get the

expected outcome from it. In this subsection we are going to show examples of factors that affect

multicore CPU performance.

13

� Memory: Memory architecture used and memory speed, can affect the performance of

the multicore CPU (Sharma et al,2009).

� Scalability: Affects performance based on the rate of increase of the workloads (i.e.

tasks) (Carpenter, 2007).

� I/O bandwidth: Can affect the performance by utilizing the CPU cores which leads to

more resources consumption without performance increasing (Sharmaet al,2009).

� Inter-core communication: The interaction between cores in multicore CPU's can be

implemented by various mechanisms, affecting overall CPU performance due to shared

workloads between cores (Sharma et al,2009).

� Operating system (OS): OS is the manager for the CPU and it assigned tasks to cores

based on a scheduling mechanism, affecting the multicore CPU performance (Pase and

Eckl 2005).

� CPU clock speed: Clock speed has an impact on processor performance with slow clock

speed reducing throughput (Pase and Eckl 2005).

� Numbers of cores: this affects the CPU performance as multicore architecture workload

is divided between the cores (Pase and Eckl 2005).

� Cache coherent: Multicore architectures uses different caching mechanisms as the cache

is shared among the cores, causing cache coherent to affect CPU performance. (Kayi

etal, 2007).

These are some examples of the factors affecting multicore CPU performance, and for the

analysis of each factor under study we will define ways to optimize the performance by

analyzing the effects of the factors and interpret the result to get the optimal expected

performance.

2.2.4 Multicore CPU Benchmarking

Multicore CPUs are designed for a variety of applications, (virtualization, Games, and

Embedded systems), with this kind of diversity, measuring the performance for multicore

systems became a necessity to ensure that the performance delivered are as required by the

system. Different tools are used to measure multicore CPU performance. Tools like profiling,

which is used to monitor and observe system performance behaviour rather than measuring.

Measuring elapse time for the processes in multicore architectures having multiple threads,

14

results in high-level information of processing speeds which increases performance as result of

parallelization (Prinslow, 2011). Utilizing benchmark tools often results in better measurements

that become more relevant and accurate to system profiling. Below are the benchmarking

approaches used to measure multicore CPU performance.

2.2.5 Multicore CPU power benchmarks

Following the evolution of mobile devices and computers, power efficiency has become an

important aspect that requires new approaches to measure multicore CPU performance.

Benchmark companies developed new benchmarks depending on power to measure the

performance. The two power benchmarks considered as the industry standard power benchmarks

(Domeika, 2009).

� EEMBC EnergyBench: Uses average power (in watts) and energy (in Joules per iteration)

as a performance metric to measure the performance. Initially it runs a multicore EEMBC

benchmark and provides power measurement simultaneously, measuring performance

and power by monitoring the power rails on system board at execution time.

� BDTI Benchmark suite: Used to estimate or measure processor power efficiency. In

estimating power, it uses consistent assumptions and conditions to give accurate

estimations that are helpful in making decisions. In measuring performance it uses vendor

benchmarks for the specific targets of measurement.

Benchmark results for multicore CPU performance depend on the test run by the

benchmark to measure the performance of the multicore CPU for specific applications,

and by defining the reasoning for measurements we can relate different multicore CPU

performances to each other based on the benchmark used to utilize and measure the

multicore CPU performance.

2.2.6 Example of Multicore CPU Performance Analysis

The following are some example of performance analysis processes for multicore CPUs that will

assist in selecting the proper CPU for a machine specification.

Server virtualization of Multicore CPU: Intel IT (Information Technology) team evaluated server

performances based on three Intel multicore CPU servers (A Four-socket server based on Quad-

15

Core Intel Xeon CPU X7350 with 16 cores, a dual-socket server based on Quad-Core Intel Xeon

CPU X5355 with 8 cores and a dual-socket server based on Intel Dual-Core Xeon CPU 5160

with 4 cores) (Carpenter, 2007).

In comparing the performance of the multicore CPUs, the Intel IT team targeted the speed of the

CPUs and the power efficiency. Due to CPU clock speed, runtime used to measure the

performance on each CPU, the data was normalized. Furthermore, the normalized workload

consists of VMs (Virtual Machines) and a copy of a synthetic CPU intensive DB application in

each VM.

W-M/Job (Watt-minute per job) metrics was utilized to measure CPU power efficiency with an

increasing workload to test the scalability factors of the CPUs (Carpenter, 2007). The results

from the three servers show different levels of scalability in terms of power consumption. As the

VMs number increased the run time remains constant until the workload equals the number of

cores. After the number of VMs exceeds the number of cores, the run time begins to increase,

Fig. 2.1 shows the result of the servers based on Intel multicore CPU run times(Jain, 1991).

We can observe that the Intel X7350 CPU run time is almost constant, until the number of VM

reach 16, then it starts to increase. Alternatively, in the case of the Intel X5355, the run time

starts to increase around 6 VMs, and around 4 VMs were running the Intel 5760.

Another approach that is useful in performance evaluation of the CPUs is to measure the power

consumption of the different CPUs based upon increasing workload to test the scalability

(Carpenter, 2007). The result of the test shows that Quad-core Intel Xeon CPU X7350 based

16

servers, consumed more power than its alternatives due to the larger number of cores.

Consuming at an average of 495 W (Watts) on 2 VMs running, 478 W for Quad-core Intel Xeon

CPU X5355, and average of 330 W for Dual-core Intel Xeon CPU 5160. As the number of VMs

increased, the servers became more power efficient which can be observed from figure 2. The

Quad-core Intel Xeon CPU X7350 based servers with the maximum workload showed the power

consumption per job decrease from the start and that is due to scalability of the CPU.

Fig. 2.2 shows the increasing of power consumption due to the number of VMs Jain, 1991).

This section reviewed examples of how performance analysis works, by comparing the multicore

CPUs. We can use the result to make proper decisions in terms of selecting the appropriate CPU

for a required performance level.

2.2.7 Heterogeneity Vs Homogeneity

In a multicore chip, the cores could be identical or there could be more than one kind of core.

Our research is focused on a homogeneous multicore environment. But we consider important to

explain the differences between homogeneous and heterogeneous CMP. There are two levels of

heterogeneity depending on whether the cores have the same instruction set or not.

Hence there are three possibilities:

• Identical cores, as in most current multicore chips from the Intel Core 2 to the Tilera 64.

• Cores implementing the same instruction set but with different non-functional characteristics.

17

• Cores with different instruction sets like in the Cell processor where one core implements the

PowerPC architecture and 6-8 synergistic processing elements implement a different RISC

instruction set.

Fig. 2.3. A basic homogenous Chip Multiprocessor(Faxen, 2008).

Fig. 2.4. An example of a heterogeneous Chip Multiprocessor(Faxen, 2008).

2.2.8 Memory Hierarchy and interconnection

One of the major challenges facing computer architects today is the growing discrepancy in

processor and memory speed (Chapman et al, 2008). Processors have been consistently getting

faster. But the more rapidly they can perform instructions, the quicker they need to receive the

values of operands from memory. Unfortunately, the speed with which data can be read from and

written to memory has not increased at the same rate. Memory access time is increasingly the

18

bottleneck in overall application performance. As a result, an application might spend a

considerable amount of time waiting for data. This not only negatively impacts the overall

performance, but the application cannot benefit much from a processor clock-speed upgrade

either.

In response, the vendors have built computers with hierarchical memory systems, in which a

small, expensive, and very fast memory called cache memory (or “cache” for short), supplies the

processor with data and instructions at high rates. Each processor of a shared memory system

needs its own private cache if it is to be fed quickly; hence, not all memory is shared. Most

programs have a high degree of locality in their accesses. Memory hierarchy tries to exploit

locality.

There two types of locality:

• Spatial locality: When accessing things nearby previous accesses

• Temporal locality: When reusing an item that was previously accessed.

Figures below show an example the organization of processors memory hierarchy.

Figure 5 shows the organization with two levels of cache memory. Nowadays an additional level

(level 3) is used in many multicore processors.

Fig. 2.5 Memory access hierarchy organization of general processors units.

19

Fig. 2.6-7. Estimation of speed accesses scale in a processor unit

One salient characteristic of multicore architectures is that they have a varying degree of sharing

of caches at different levels. Most of the architectures have cores with a private L1 cache.

Depending on the architecture, an L2 cache is shared by two or more cores; and an L3 cache is

shared by four or more cores. The main memory is typically shared by all cores. The degree of

sharing at a level varies from one multicore processor to another. When we speak of CMP we are

speaking of shared memory at some levels. Most multicore designs provide some form of

coherent caches that are transparent to software. First level caches are typically private to each

core and split into instruction and data caches, as in the preceding generation of single core

processors (Faxen et al, 2008).

• Early dual core processors had private per core second level caches and were essentially a

double single core processor with a minimum of glue logic and an essentially snooping

coherence protocol. Some designs continue with separate L2 caches, like the Tilera 64 where

each core has a 64 KB L2 cache. However, the glue logic is in this case anything but simple and

amounts to a directory based cache coherency protocol on a mesh interconnect.

Second level caches can be shared between the cores on a chip; this is the choice in the Sun

Niagara (a 3MB L2 cache) as well as the Intel Core 2 Duo (typically 2-6MB)(Faxen et al, 2008).

• Separate L2 caches backed by a shared L3 cache as in the AMD Phenom processor (512 KB L2

per core, shared 2MB L3) or the recent Intel Core i7 (256 KB L2 per core, shared 8MB L3).

20

• A hierarchy where L2 caches are shared by subsets of cores. This pertains to the four core Intel

Core 2 Quad, which is essentially two Core 2 Duo in a single package. Each of the chips have an

L2 cache shared between its two cores but the chips have separate caches. With private L2

caches, the L1-L2 communication is local, and the intercore interconnect is located below the L2

cache, whereas with a shared L2 it sits between the L1 and L2 caches. In the shared case, all L1

misses go over the interconnect whereas in the private case only those that also miss in the L2 do

so. This requires a more expensive, low latency interconnect (often a crossbar) which uses a lot

of area that could otherwise be used for larger caches (or more cores). Also, L2 access time is

increased by the need to go over the interconnect (Faxenet al, 2008). On the other hand, private

L2 caches might waste chip area by having the same data occupy space in several caches, and

accessing data in the L2 of another core, something that is sometimes needed to achieve cache

coherency, becomes more expensive than accessing a shared L2 cache.

2.2.9 Performance analysis and Tuning

This research also aims to provide a review of guide to good practices when analysing and tuning

an OpenMP parallel application. Also we provide an explanation of the tools used to analyse the

execution performance of those applications. This research provides a set of key factor to have in

mind when parallelizing a multithread application. In order to find the reasons of a poor

performance, it is necessary to understand how the application is organized. As we said in the

introduction to this thesis, we haven`t followed the general model where the analysis of the

application is done taking the application as a black box. Our work differs from the general

model in that, doing the analysis on that way might be sometimes more difficult due to the lack

of knowledge of the application’s task flow. Therefore we have gone one step ahead in the

analysis of the applications through extraction of the applications structure and execution

patterns.

(West, 2008) stated the parameters that must be considered when we analyse the performance

and tuning of multithread applications.

21

The key attributes that affect parallel performance are:

� Coverage

� Granularity

� load balancing

� locality and

� Synchronization.

The first three are fundamental to parallel programming on any type of machine. However

locality is a very important issued to have in mind when optimizing a multithread application in a

shared memory system. Their effects are often more surprising and harder to understand, and

their impact can be huge.

22

Chapter 3: System Analysis and Design

3.0 Introduction

With computers playing an increasingly critical role in our day-to-day lives, it is important to

know their components and how each works and of what impact they impose on performance of

the computer system.

Computer performance is characterised by the amount of useful work accomplished by a

computer system compared to time and resources used. Depending on the context, good

computer performance is dependent on the available system resources. Most computer users do

not know the system specification, they lack the knowledge of conventional way of extracting

system parameters. This is the core issue addressed in this thesis (Otherwise known as

Autospec) every computer users will be able to determine the system configuration by installing

and running the software.

The System development can be likened to building a house, this demands adequate planning

and preparation in order to meet the objectives of the proposed design.

The parameters or the resources that are of interest in our analysis include the followings:

� Summary

� Operating system

� CPU

� RAM

� Hard drive

� Optical drives

� Motherboard

� Graphics

� Network

� Audio

� Peripheral

� Performance

23

3.1 Description of Existing System

What's in your computer? Most people can probably name the processor (Intel or AMD, Celeron

or Pentium), maybe how much RAM it has, and maybe how big the hard drive is.

The computer stores display many bright shiny PCs laid out next to each other, most will have

tags or stickers indicating the:

� Processor brand and model

� Hard drive size and speed

� Amount of memory (RAM)

� Graphics card

� Operating system etc

Some years later, when you need to upgrade your computer, that tag or sticker may be long gone.

The problem with the current/existing system is that. Some of the basic information can be found

by right-clicking my Computer and then clicking Properties. The General tab lists some

statistics, and the Device Manager on the Hardware tab lists all of the hardware you have

installed. But it misses out lots of information that you need and much time is spent hunting

around window sourcing for these information. Such as graphic card, motherboard type etc

3.2 The Proposed System

 Autospec is a software that acts as a sticker for your PC. It presents a more wholestic

environment in a window form where the system analyses and shows the statistics on every piece

of hardware in your computer to the user; this includs CPU, Motherboard, RAM, Graphics card,

Operating systems, Hard Disks, Optical Drives, Audio support. Additionally Autospec adds the

performance of computer, so you can easily see if there is a problem and how you can resolve it

and also an interface for checking for software updates.

The application is aimed at reducing or eliminating the shortcomings of the existing system. In

this regard, some of the benefits to be derived from the proposed system include:

� Upgrade of the system memory, you can check how many memory slots your computer

has and what memory's already installed.

24

� Use Autospec to quickly list the components, when buying/selling a PC. You can use

Autospec to check that the computer has what the label says it has.

� Autospec has all the information on one easy-to-understand screen. There is no need to

hunt around Windows

� Autospec gives you the option for checking for software update when connected to the

internet.

� It also helps you to determine causes of overhead in your computer and possible solutions

to improve the performance

3.3 Design Methodology

The methodology adopted in the analysis and design of this work is object-oriented paradigm

and visual modeling throughout the development life cycles to foster better user communication

and product quality.

3.3.1 Object-Oriented Analysis and Design

Object-oriented analysis

The purpose of any analysis activity in the software life-cycle is to create a model of the system's

functional requirements that is independent of implementation constraints.

Common models used in OOA are use cases and object models. Use cases describe scenarios for

standard domain functions that the system must accomplish.(Jacobsen et al, 1992)

3.4 Design Tool

The design tool used in this research is Unified Modelling Language (UML). The reason for

adopting UML as a design tool in our software development is that it is graphical language for

modelling software systems. UML consist of a number of diagrams that can be used to analyse,

specify, construct, visualize, and document software designs. UML has diagrams that guides a

developer at every stage of the application development process, from requirements gathering

through design, and into coding, testing and deployment.

25

The Unified Modeling Language (UML) offers a way to visualize a system's architectural

blueprints in a diagram including elements such as:

� Any activities (jobs)

� Individual components of the system

� And how they can interact with other software components.

� How the system will run

� How entities interact with others (components and interfaces)

� External user interface

� How the system is expected to be used.

Although originally intended solely for object-oriented design documentation, the Unified

Modeling Language (UML) has been extended to cover a larger set of design documentation (as

listed above),(Satish, 1997) and been found useful in many contexts.

26

3.4.1 Use case diagram

User

View Summary

View Operating System

View CPU

View RAM

View Hard disk

View Motherboard

View Audio

View Graphic

View Network

View peripherals

View Optical drives

View Performance

Print Specification

Save Specification

Fig. 3.1: AutoSpec Use Case Diagram

27

3.4.2 Class Diagram

Class diagram depicts the system’s object structure. They show object classes that the system is

composed of as well as the relationships betweens between those object classes

Fig. 3.2: Class diagram

28

3.5 Data Specification

The application has no database. It only makes use of file system to store data. The data is stored

on user request. This can be done by clicking the File menu of the system and selecting Save As

Text File option. The system specification is stored with the extension .txt which shows that it is

an ordinary text file. The file name comes with the name of system specification type say

OsControl.txt motherboardControl.txt etc. The file name follows the normal naming convention

of MS file name.

Fig. 3.3: Save Specification as text file

29

Chapter 4: System Implementation

4.0 Introduction

Implementation is the realization of an application, or execution of a plan, idea, model, design,

specification, standard, algorithm, or policy. Systems implementation is concerned with the

construction of the new system and the delivery of that system into production (that is, the day-

to-day business or organization operation).In software development, system implementation

covers choice of programming language used, the development environment, software testing

and documentation.

The AutoSpec software was implemented with Visual Studio 2010 (the best Integrated

Development - IDE). The IDE has so many things in it. The C# compiler is there, the MS SQL

server and other tools.

4.1 Choice of Development Environment

4.1.1 Visual Studio .NET

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It is

used to develop computer programs for Microsoft Windows, as well as web sites, web

applications and web services. Visual Studio uses Microsoft software development platforms

such as Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and

Microsoft Silverlight.

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring. The

integrated debugger works both as a source-level debugger and a machine-level debugger. Other

built-in tools include a forms designer for building GUI applications, web designer, class

designer, and database schema designer. It accepts plug-ins that enhance the functionality at

almost every level—including adding support for source-control systems (like Subversion) and

adding new toolsets like editors and visual designers for domain-specific languages or toolsets

for other aspects of the software development lifecycle (like the Team Foundation Server client:

Team Explorer).

30

Visual studio is user friendly and has many tools that a novice can use without been guided.

Other IDEs like eclipse, NetBeans, dreamweaver etc. are imitating the structure of visual studio

and this makes visual studio a pace therefore the best IDE in the world. This justifies why it was

chosen for this project.

4.1.2 Choice of Programming Language

C# (pronounced as see sharp) is a multi-paradigm programming language encompassing strong

typing, imperative, declarative, functional, generic, object-oriented (class-based), and

component-oriented programming disciplines. It was developed by Microsoft within its .NET

initiative and later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC

23270:2006). C# is one of the programming languages designed for the Common Language

Infrastructure. C# is intended to be a simple, modern, general-purpose, object-oriented

programming language. C# is designed for building robust and durable components to handle

real- world situations.

C# and Java are world leading programming but C# is more flexible. It contains more

functionalities, data types than Java. C# programs are developed with visual studio which

happens to be the best IDE in the world. This means that it is to write program in C# than other

none Microsoft based programming languages like Java, Python etc.

4.2 Implementation Architecture

The system was implemented based on the block diagram shown in fig. 4.1. AutoSpec has 12

system specification categories namely:

(i) Summary: this contains quick summary of the system running the application.

(ii) Operating System: this contains the details of the operating system in which the

application is running. It gives every details of what an operating system has.

(iii) CPU: this contains every information about the system’s central processing unit.

(iv) RAM: this contains information about the system physical memory.

(v) Motherboard: the detailed information about the motherboard is contained in this

section of the system specification.

(vi) Graphics: the motherboard resolution and graphic characteristics are displayed in this

section.

31

(vii) Hard Drives: this contains information about the hard drives present in the system

running this application.

(viii) Optical Drives: this contains information about optical drives plugged into the

system while this application is running. When this application is running, if any flash

drive, modem or other drives are plugged, the software detects them and show their

details.

(ix) Audio: this contains the audio properties of the system running this application.

(x) Peripherals: this gives details of all the peripherals of the system.

(xi) Network: this contains the details of the system network and adapters.

(xii) Performance:this contains the analysis of the system performance. It shows the

reason why system is slow and suggests ways of optimizing the CPU usage.

All the system specification categories normally display in one central display unit. When a

category is selected, the program removes what is on the system specification display unit and

places the new category details on it.

Each of the specification category was implemented using userControl feature of visual studio.

The flowchart of the entire system is as shown in fig. 4.2. The flowchart covers all the parts of

the software application.

4.2.1 Main interface Implementation

The main interface was implemented using visual C# on .net framework of Microsoft visual studio

2010.The concept of pick and drop was used to arrange the controls used in the project. More graphical

works were added to give the project shape. The main interfaceis actually a static one. It gives no room

for user to input any kind of text as input. The only time the user is expected to input text is during

saving of system specification. The application contains just one main form called frmMain. It is on top

of this form that several user controls are called up and placed on the display unit of the main interface.

The application also has two other small forms namely frmAbout and frmHelp.frmAbout contains

information about the whole application while frmHelp contains instruction on how to use the

application.

32

n

Summary

Operating System

CPU

RAM

Motherboard

Graphics

Hard Drives

Optical Drives

Audio

Peripherals

Network

Performance

System Specification display

Fig. 4.0: System Block Diagram

File menu View Menu Help Menu

33

START

AutoSpec Main Interface

Select Specification category

Specification details

Fig. 4.1: System flowchart

Select Menu

Is Menu

File?
Select File menu option Yes

Is File menu

option Exit?
Yes

No

Is Menu

Help?

Quit App

Enter file name

Save specification

Is File menu

option Print?
Print Dialog

box

Yes

No

No

Save As Dialog box

Print Spec.

X

Select Help menu option

Is Help menu

option How to

use?

No

No

Yes

How to use main interface

Yes

Select View menu option

V

No

H

34

4.2.1 Main interface Implementation

The main interface was implemented using visual C# on .net framework of Microsoft visual

studio 2010.The concept of pick and drop was used to arrange the controls used in the project.

More graphical works were added to give the project shape. The main interfaceis actually a static

one. It gives no room for user to input any kind of text as input. The only time the user is

expected to input text is during saving of system specification. The application contains just one

main form called frmMain. It is on top of this form that several user controls are called up and

placed on the display unit of the main interface. The application also has two other small forms

namely frmAbout and frmHelp.frmAbout contains information about the whole application

while frmHelp contains instruction on how to use the application.

Fig. 4.1: System flowchart

Is view menu

option statusbar?

Is Help menu

option Online

Help?

Yes

No

Launch Online

Help

Is Help menu option

check for update?
Launch online

update
Yes

No

No

Show/Hide statusbar

Print Spec.

Select Section option

Yes

System Specification

H V
X

STOP

About App Dialog box

35

4.2.2 Input Implementation

It is worthy to note that this system has no input fields at all. This means that for a user to see an

output, no input is needed. The only thing that looks like input is the specification category. For

the user to see the output of the system, one of the categories must be clicked. So the input to the

system is only made by clicking not through the keyboard as obtained in other software

application. As mentioned earlier, the only time the user enters input from the keyboard is when

the user is trying to save output of system specification. This cannot be said to be main input

because it only happens during saving of system specification. Moreover it is not required to

view the output of the system so it is kind of tertiary input.

4.2.3 Output Implementation

The output of the system was implemented using a special control called User Control. User

Control allows the programmer to customize already existing controls to match his own task.

Each of the 12 categories of the system specification is a user control. They all stand alone and

are called up each time they are needed especially when the link is clicked. The main screen

contains a panel where each of the 12 controls are placed. The summary of the 12 controls are

summarized in Table 4.1.

Table 4.1: List of output screen controls

U s e r C o n t r o l F u n c t i o n

A u d i o C o n t r o l D i s p l a y s a u d i o d e t a i l s o f t h e s y s t e m

C P U C o n t r o l D i s p l a y s C P U d e t a i l s

G r a p h i c s C o n t r o l D i s p l a y s G r a p h i c s d e t a i l s

H D C o n t r o l D i s p l a y s H a r d D r i v e s d e t a i l s

M o t h e r b o a r d C o n t r o l D i s p l a y s m o t h e r b o a r d d e t a i l s

N e t w o r k C o n t r o l D i s p l a y s n e t w o r k d e t a i l s

O p t i c a l D r i v e s C o n t r o l D i s p l a y s o p t i c a l d r i v e s d e t a i l s

O S C o n t r o l D i s p l a y s o p e r a t i n g s y s t e m d e t a i l s

P e r f o r m a n c e C o n t r o l D i s p l a y s t h e s y s t e m p e r f o r m a n c e

P e r i p h e r a l s C o n t r o l D i s p l a y s p e r i p h e r a l s d e t a i l s

R A M C o n t r o l D i s p l a y s R A M d e t a i l s

S u m m a r y C o n t r o l Displays the system specification quick summary

36

4.3 Software Testing

System testing is the process of executing program with the primary aim of viewing the output

and checking for errors.Autospec was meticulously tested in order to determine the stability of

the software. During the first phase of the test, the software was run on another system

(computer) apart from the one it was coded with. This worked fine but a lot of bugs were

discovered as a result. Through the use of some tools in Visual C Sharp such as the watch and

immediate window, wewere able to identify and fix those faulty parts of the program

(software).such as network error handler front size and wrong date format.

Further phase of the testing focused on user friendliness. We optimized the user interface to

make it more users friendly and easy to use

4.4 Screen Shots of Demos

When the application is launched, the very first page displays the application summary page. It

shows a quick summary of the system specifications.

37

Fig. 4.3: Auto Spec summary screenshot

The left hand of the application is a list of different system specifications like operating system,

CPU, RAM, motherboard, Graphics, Hard drives, optical drives audio, peripherals, network and

performance. Any of the specification that is clicked brings out the details. The screenshot in fig.

4.3 shows the operating system details.

38

Fig. 4.4: Operating System details screenshot:

when the user selects operating system, it displays all the information about the operating system

such as Bit rating, OS type and installation date e. t. c.

39

When the CPU is selected, the details of the CPU displays as shown in fig. 4.5. The details

displayed is system dependent.Thses

Fig. 4.5: CPU details screenshot

In the same vain when the RAM is selected, the details of the system random access memory is

displayedas shown in fig. 4.6

Fig. 4.6: RAM details screenshot

40

When the Motherboard is selected, the comprehensive details of the system motherboard is

displayed as shown in fig. 4.6.

Fig. 4.7: Motherboard details screenshot.

When the graphicsdisplayis selected, it shows the monitor specifications such as the monitor

width and height etc.

Fig. 4.8: Graphics display details screen.

41

Fig. 4.9: Hard Drives details screenshot

when the Hard Drives is selected, it displays all the information about the disk such the total

size,total heads and sectors etc.

42

When the optical drive is selected, it displays all the drives connected to the system.As at the

time when the system was tested, one optical drive was plugged into the system and the system

was able to detect and display the details as shown in fig. 4.9.

Fig. 4.10: Optical Drives details screenshot

43

Fig. 4.11: Audio details screenshot:

when audio is selected, it displays information related to the system audio such name, device ID

e. t. c.

Fig. 4.12: Peripheral details screenshot:

44

When perisherial is selected, it displays all the information related to peripheral devices such as

printer, keyboard e. t. c.

Fig. 4.13: Network details screenshot:

When Network is selected, it displays all the information related to the Networksuch as

connection status, Workgroup and DNS Host name etc.

Fig. 4.14: Performance details screenshot:

when performance is selected, it show all the running process, background process, causes of

overhead and possible solutions

45

4.5 Documentation

4.5.1 Hardware Requirement

Below are the minimum hardware requirements to run the application

• RAM: 1GB

• Processor speed of 1.4GHz

• Hard disk: 10GB

• Resolution: 800 by 600 pixels

4.5.2 Software Requirement

The software is .NET framework based which means that it can only run on Microsoft operating

system. Below are the minimum software requirements to run this application:

• Operating system: Windows XP service pack 3, Windows vista, Windows 7,

Windows8.

• .NET framework of version 4.0

4.5.3 User Manual

The application usage is a very simple andstraight forward one. To use the application, a simple

installation is required. Simply open the AutoSpec CD and double click the setup.exe file and

follow the installation procedure to install the software. After installation, launch the application

from all programs. The specification categories are arranged at the left hand side of the

application, click any of them to view its details.

To save any of the specification details, click File menu then click Save As Text File and enter

the name of the file or simply press Enter key because the application always come with a file

name by default.

The specification details can also be printed out. To do this, simply click File menu and click

Print option. The AutoSpec software is also published online for updating. If you want to update

your version, simply click Help menu and select Check for update option. A web browser will

46

be launched for you automatically. You will see a link on the browser to either update or

message telling you that there is no update available.

4.5.4 Source code listing

The system is made up of several controls with each control presented as a separate class. There

are also other classes such as AS, frmMain and HardwareInfo. for source code listing of this

See appendix (A to O).

47

Chapter 5: Summary and Conclusion

5.0 Summary

AutoSpec is an application that helps both experts and novice to retrieve system specification

without having to move from application to another. AutoSpec has the whole system properties

in one place and therefore helps the analysts to have full view of what the system is made up of.

One of the greatest achievements of this application is that a novice can see the stuff a PC is

made of without being taught how to do so. In traditional system specifications, one has to move

from one part of the system, from one application of the system to another just to get different

information about the system. This application has made it possible to get the whole information

with just a click of the mouse.

Another achievement of the application is its ability to analyse system performance, detect why

the system is slow, and suggest some important things to be done in order to fix them. The

application equally shows all the running programs and background processes in the system and

how they affect the performance of such system.

The application is a light weight one so it matches any system running it.

5.1 Conclusion

System specification is one thing that a user of a PC finds difficult in viewing and analysing. In

fact majority of computer users don’t even know where to view the system specification. This

application has brought together every basic information a user needs to know about a personal

computer. With the achievements of this project work, it can be concluded that this software

application is what computer users need to analyse their systems and get full information on the

system specifications and performance without having to bring in computer experts.

48

5.3 Recommendations

Research work is a continuous process and many things can be added to an existing system and

the addition becomes a research on its own. Due to the numerous benefits in this software

application and its openness to improvement, we hereby recommend that:

1. Computer users should be advised to use the application.

2. Students should be taught system analysis and computer maintenance so as to be able to

improve this work as technologies change/improve.

49

REFERENCES

Arnold O. Allen (1994): ‘‘Computer Performance Analysis with Mathematics’’.

Academic Press, Roseville California,. pp 1. ISBN 978-0-12-051070-2.

Agarwal, A.; Levy, M.,(2007): ‘The KILL Rule for Multicore’, Design

Automation Conference, DAC '07. 44th ACM/IEEE, vol., no.4, pp.750-753,

4-8 June 2007

Chapman, G. Justand R. Van de Pass,(2008): ‘using OpenMP, Portable Shared

Memory Parallel Programming’, Massachusetts Institute of Technology,

pp.4, 16-35

Conallen, Jim (2000).‘‘Building Web Applications with UML’’. Addison Wesley.

p.147. ISBN 0201615770.

Carpenter R. E.,(2007): “Comparing Multi-Core Processors for Server

Virtualization”, Intel

Corporation.http://www.multicoreinfo.com/research/papers/whitepapers/multicore_virt

ualization.pdf

Domeika M., (2009): “Evaluating the Performance of Multi-Core

Processors”,http://www.embedded.com/design/embedded/4008794/Evaluati

ng-theperformance- of-multi-core-processors-Part--1

Faxen K.,Benggttsson C.,Bronsson M., Grahn H.,Hagersten E., Jonsson B., Kessler

C.,LisperB., Stenstrom P., Svensson B.,(2008)"Multicore Computing-The

State of Art", p.3. URL: http://eprints.sics.se/3546/

Jacobsen, Ivar; Magnus Christerson, Patrik Jonsson and Gunnar Overgaard (1992).

‘‘Object Oriented Software Engineering’’. Addison-Wesley ACM Press. pp.

77–79. ISBN 0-201-54435-0.

 Jain R,(1991): ‘‘The Art of Computer System Performance Analysis’’ , Multicore

Processor Performance Analysis - A Survey. Wiley- Interscience, New

York, NY, April 1991, ISBN: 0471503361. Page 7 of 9

50

Kayi A., Yao W., EL-Ghazawi T. and Newby G.(2007): ‘‘Experimental Evaluation

of Emerging Multi-core Architectures’’, Parallel and Distributed Processing

Symposium, IEEE International.

http://cecs.uci.edu/~papers/ipdps07/pdfs/PMEO-PDS-21-paper-1.pdf

Mario Adolfo Zavala (2009): ‘‘High Speed Computing, Performance Analysis’’

sun blue prints, Arizona US, pp. 9-10.

Monchiero M., Canal R. and Gonzalez A., (2006): ‘‘Design Space Exploration for

Multicore Architectures:A Power/Performance/Thermal View’’,

Proceedings of the 20
th

 annual international conference on Supercomputers,

ACM New York, NY, ISBN:1-59593-282-8, Pages 177 &186.

Pase D. M. and Eckl M. A.,(2005) :‘A Comparison of Single-Core and Dual-Core

Opteron Processor Performance for HPC’ , Technical report, IBM Developer

Works, IBM Corporation.

 ftp://ftp.support.lotus.com/eserver/benchmarks/wp_Dual_Core_072505.pdf

Prinslow G.,(2011): “Overview of Performance Measurement and Analytical

Modeling Techniques for Multi-core Processors”,

http://www.cse.wustl.edu/~jain/cse567-11/ftp/multcore/index.html

Ruud van der Pas,(2002): “High Performance Computing, Memory Hierarchy in

cache-based systems”, Sun blue prints,Arizona, pp. 2-3.November 2002.

URL: http://www.sun.com/blueprints/1102/817-0742.pdf

Sharma A., Kumble M., Moktali P. R.and Siri H. (2009): ‘‘Performance analysis of

Multicore Systems’’, Intel, March http://software.intel.com/en-

uus/articles/performanceanalysis- of-multicore-systems-4

West P.,(2008): Core Monitors: Monitoring Performance in Multicore Processors’,

Master Thesis, The Florida State University- Computer Science Department.

Wikipedia: "Moore's Law", http://en.wikipedia.org/wiki/Moore's_law

 Accessed on 12
th

 may 2014.

51

Appendix A
AS class source code

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Management;

namespace AutoSpec

{

classAS
 {

publicstaticstring Summary(AutoSpecType ast)

 {
return"";

 }

publicenumAutoSpecType

 {

 Ram,

Cpu,
 Motherboard,

 Graphics,

 Audio,
 Network,

 HardDrives,

 OpticalDrives,
 Peripherals,

 OS,

 Perfomance
 }

publicstaticbool HasConnection()

 {
try

 {

 System.Net.IPHostEntry i = System.Net.Dns.GetHostEntry("www.google.com");
returntrue;

 }

catch
 {

returnfalse;

 }

 }
 }

}

52

Appendix B
AudioControl source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassAudioControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public AudioControl()

 {

InitializeComponent();

 }

privatevoid AudioControl_Load(object sender, EventArgs e)

 {
ManagementObjectSearcher mo = newManagementObjectSearcher("select * from

Win32_SoundDevice");

foreach (ManagementObject soundDevice in mo.Get())

 {

String deviceId = soundDevice.GetPropertyValue("DeviceID").ToString();
String name = soundDevice.GetPropertyValue("Name").ToString();

 rtfAudioDetails.Text += "Name: " + name + "\nDevice ID: " + deviceId +

"\nManufacturer: " +
soundDevice.GetPropertyValue("Manufacturer") + "\n\n";

 }

 mainForm.textToSave = "AUDIO\n" + rtfAudioDetails.Text;
 }

privatevoid AudioControl_Resize(object sender, EventArgs e)
 {

 rtfAudioDetails.Width = this.Width - 24;

 rtfAudioDetails.Height = this.Height - 40;

 }
 }

}

53

Appendix C
CPU control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec
{

publicpartialclassCPUControl : UserControl

 {
publicfrmMain mainForm = newfrmMain();

public CPUControl()

 {

InitializeComponent();
 }

publicstring getCPUDetails()
 {

string cpu = "";

using (ManagementObjectSearcher win32Proc = newManagementObjectSearcher("select * from
Win32_Processor"),

 win32CompSys = newManagementObjectSearcher("select * from

Win32_ComputerSystem"),
 win32Memory = newManagementObjectSearcher("select * from

Win32_PhysicalMemory"))

 {

foreach (ManagementObject obj in win32Proc.Get())
 {

string clockSpeed = obj["CurrentClockSpeed"].ToString(); //retrieves the current speed

of the cpu
string procName = obj["Name"].ToString(); //retrieves the name of the cpu

string manufacturer = obj["Manufacturer"].ToString(); //retrieves the manufacturer of the

cpu
string version = obj["Version"].ToString(); //retrieves the version of the cpu

cpu += "Current CPU Speed: " + clockSpeed + "MHz\n" + procName + "\n" + manufacturer +

"\n" + version +

"\nTemperature: " + GetTemperature() + "\nMax CPU speed: " +
obj["MaxClockSpeed"].ToString() + "MHz";

 }
 }

return cpu;

 }

privatevoid CPUControl_Load(object sender, EventArgs e)

 {
 rtfCPUDetails.Text = getCPUDetails(); //displays the cpu details

 mainForm.textToSave = "CPU\n" + rtfCPUDetails.Text;

 }

54

//This method retrieves the cpu temperature

publicstring GetTemperature()
 {

string strTemp = "";

ManagementObjectSearcher searcher = newManagementObjectSearcher(@"root\WMI", "SELECT *
FROM MSAcpi_ThermalZoneTemperature");

/*foreach (ManagementObject obj in searcher.Get())

 {

 Double temp = Convert.ToDouble(obj["CurrentTemperature"].ToString());
temp = (temp - 2732) / 10.0;

strTemp += temp;

 }*/
return strTemp;

 }

privatevoid CPUControl_Resize(object sender, EventArgs e)

 {

//Makes the cpu details control to resize its size as the main control resizes

 rtfCPUDetails.Width = this.Width - 24;
 rtfCPUDetails.Height = this.Height - 40;

 }

 }
}

55

Appendix D
Main form source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing;
using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace AutoSpec

{

publicpartialclassfrmMain : Form
 {

publicstring textToSave;

publicstring summary;
public frmMain()

 {

InitializeComponent();

 }

privatevoid summaryToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadSummary();

 }

privatevoid operatingSystemToolStripMenuItem_Click(object sender, EventArgs e)

 {

LoadOS();
 }

privatevoid cPUToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadCPU();

 }

privatevoid rAMToolStripMenuItem_Click(object sender, EventArgs e)

 {

LoadRAM();
 }

privatevoid motherboardToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadMotherboard();

 }

privatevoid graphicsToolStripMenuItem_Click(object sender, EventArgs e)

 {

LoadGraphics();
 }

privatevoid hardDrivesToolStripMenuItem_Click(object sender, EventArgs e)
 {

LoadHD();

 }

56

privatevoid opticalDrivesToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadOpticalDrives();

 }

privatevoid audioToolStripMenuItem_Click(object sender, EventArgs e)

 {

LoadAudio();

 }

privatevoid peripheralsToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadPeripherals();

 }

privatevoid networkToolStripMenuItem_Click(object sender, EventArgs e)

 {

LoadNetwork();

 }

privatevoid lnkSummary_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {
 summaryToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkOperatingSystem_LinkClicked(object sender, LinkLabelLinkClickedEventArgs

e)

 {
 operatingSystemToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkCPU_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
 {

 cPUToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkRAM_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {
 rAMToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkMotherboard_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
 {

 motherboardToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkGraphics_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {
 graphicsToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkHardDrives_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
 {

 hardDrivesToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkOpticalDrives_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {

57

 opticalDrivesToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkAudio_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {
 audioToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkPeripherals_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)
 {

 peripheralsToolStripMenuItem_Click(sender, e);

 }

privatevoid lnkNetwork_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {
 networkToolStripMenuItem_Click(sender, e);

 }

privatevoid picSummary_Click(object sender, EventArgs e)
 {

 summaryToolStripMenuItem_Click(sender, e);

 }

privatevoid picOperatingSystem_Click(object sender, EventArgs e)

 {
 operatingSystemToolStripMenuItem_Click(sender, e);

 }

privatevoid picCPU_Click(object sender, EventArgs e)

 {

 cPUToolStripMenuItem_Click(sender, e);

 }

privatevoid picRAM_Click(object sender, EventArgs e)

 {
 rAMToolStripMenuItem_Click(sender, e);

 }

privatevoid picMotherboard_Click(object sender, EventArgs e)

 {

 motherboardToolStripMenuItem_Click(sender, e);

 }

privatevoid picGraphics_Click(object sender, EventArgs e)

 {
 graphicsToolStripMenuItem_Click(sender, e);

 }

privatevoid picHardDrives_Click(object sender, EventArgs e)

 {

 hardDrivesToolStripMenuItem_Click(sender, e);

 }

privatevoid picOpticalDrives_Click(object sender, EventArgs e)

 {
 opticalDrivesToolStripMenuItem_Click(sender, e);

 }

58

privatevoid picAudio_Click(object sender, EventArgs e)

 {
 audioToolStripMenuItem_Click(sender, e);

 }

privatevoid picPeripherals_Click(object sender, EventArgs e)

 {

 peripheralsToolStripMenuItem_Click(sender, e);

 }

privatevoid picNetwork_Click(object sender, EventArgs e)

 {
 networkToolStripMenuItem_Click(sender, e);

 }

privatevoid frmMain_Resize(object sender, EventArgs e)

 {

 grpContents.Width = this.ClientSize.Width - 215;

 grpContents.Height = this.ClientSize.Height - 50;
 }

privatevoid picSummary_MouseHover(object sender, EventArgs e)
 {

 Cursor = Cursors.Hand;

 }

privatevoid picSummary_MouseLeave(object sender, EventArgs e)

 {
 Cursor = Cursors.Default;

 }

privatevoid frmMain_Load(object sender, EventArgs e)
 {

LoadSummary();

 }

publicvoid LoadSummary()

 {
SummaryControl summary = newSummaryControl();

 summary.mainForm = this;

pnlContents.Controls.Clear();

 summary.Dock = DockStyle.Fill;
pnlContents.Controls.Add(summary);

 }

publicvoid LoadOS()

 {

OSControl osCtrl = newOSControl();
 osCtrl.mainForm = this;

pnlContents.Controls.Clear();

 osCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(osCtrl);
 }

publicvoid LoadCPU()
 {

CPUControl cpuCtrl = newCPUControl();

 cpuCtrl.mainForm = this;

59

pnlContents.Controls.Clear();

 cpuCtrl.Dock = DockStyle.Fill;
pnlContents.Controls.Add(cpuCtrl);

 }

publicvoid LoadRAM()

 {

RAMControl ramCtrl = newRAMControl();

 ramCtrl.mainForm = this;
pnlContents.Controls.Clear();

 ramCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(ramCtrl);
 }

publicvoid LoadMotherboard()

 {

MotherboardControl mCtrl = newMotherboardControl();

 mCtrl.mainForm = this;
pnlContents.Controls.Clear();

 mCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(mCtrl);
 }

publicvoid LoadGraphics()
 {

GraphicsControl graphics = newGraphicsControl();

 graphics.mainForm = this;
pnlContents.Controls.Clear();

 graphics.Dock = DockStyle.Fill;

pnlContents.Controls.Add(graphics);

 }

publicvoid LoadHD()

 {
HDControl hdCtrl = newHDControl();

 hdCtrl.mainForm = this;

pnlContents.Controls.Clear();
 hdCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(hdCtrl);

 }

publicvoid LoadOpticalDrives()

 {

OpticalDrivesControl opCtrl = newOpticalDrivesControl();
 opCtrl.mainForm = this;

pnlContents.Controls.Clear();

 opCtrl.Dock = DockStyle.Fill;
pnlContents.Controls.Add(opCtrl);

 }

publicvoid LoadAudio()
 {

AudioControl audioCtrl = newAudioControl();

 audioCtrl.mainForm = this;
pnlContents.Controls.Clear();

 audioCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(audioCtrl);

60

 }

publicvoid LoadPeripherals()

 {

PeripheralsControl peripherals = newPeripheralsControl();
 peripherals.mainForm = this;

pnlContents.Controls.Clear();

 peripherals.Dock = DockStyle.Fill;

pnlContents.Controls.Add(peripherals);
 }

publicvoid LoadNetwork()
 {

NetworkControl networkCtrl = newNetworkControl();

 networkCtrl.mainForm = this;
pnlContents.Controls.Clear();

 networkCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(networkCtrl);

 }

publicvoid LoadPerformance()

 {
PerformanceControl performanceCtrl = newPerformanceControl();

 performanceCtrl.mainForm = this;

pnlContents.Controls.Clear();
 performanceCtrl.Dock = DockStyle.Fill;

pnlContents.Controls.Add(performanceCtrl);

 }

privatevoid exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

Application.Exit();
 }

privatevoid checkForUpdateToolStripMenuItem_Click(object sender, EventArgs e)
{

string version = Application.ProductVersion;

System.Diagnostics.Process.Start("http://www.autospec.com/version.php?v=" + version);
}

privatevoid performanceToolStripMenuItem_Click(object sender, EventArgs e)

 {
LoadPerformance();

 }

privatevoid lnkPerformance_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e)

 {

LoadPerformance();
 }

privatevoid saveAsTextFileToolStripMenuItem_Click(object sender, EventArgs e)

 {
string Text2Save = pnlContents.Controls[0].Name == "SummaryControl" ? summary :

textToSave;

string filename = pnlContents.Controls[0].Name;
 saveFileDialog1.InitialDirectory =

Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

61

 saveFileDialog1.FileName = saveFileDialog1.InitialDirectory + "\\" + filename

+ ".txt";
if (saveFileDialog1.ShowDialog() != DialogResult.Cancel)

 {

System.IO.File.WriteAllText(saveFileDialog1.FileName, Text2Save);
System.Diagnostics.Process.Start(saveFileDialog1.FileName);

 }

 }

privatevoid printToolStripMenuItem_Click(object sender, EventArgs e)

{

if (printDialog1.ShowDialog() != DialogResult.Cancel)
printDocument1.Print();

 }

privatevoid printDocument1_PrintPage(object sender,

System.Drawing.Printing.PrintPageEventArgs e)

 {

string Text2Save = pnlContents.Controls[0].Name == "SummaryControl" ? summary :
textToSave;

e.Graphics.DrawString(Text2Save, newFont("Times New Roamn", 12, FontStyle.Regular),

Brushes.Black, 10, 10);
 }

 }

}

62

Appendix E
Graphics control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassGraphicsControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public GraphicsControl()

 {

InitializeComponent();

 }

privatevoid GraphicsControl_Load(object sender, EventArgs e)

 {
ManagementClass mgmt = newManagementClass("Win32_DisplayConfiguration");

//create our ManagementObjectCollection to get the attributes with

ManagementObjectCollection objCol = mgmt.GetInstances();
string gateway = String.Empty;

//loop through all the objects we find

foreach (ManagementObject obj in objCol)
 {

//Displays the graphics details of the system

 rtfGraphicsDetails.Text += "Name: " + obj["DeviceName"].ToString() +

"\nMonitor Width: "+ Screen.PrimaryScreen.WorkingArea.Width+
"\nMonitor Height: " +Screen.PrimaryScreen.WorkingArea.Height+ " \nMonitor Frequency: " +

obj["DisplayFrequency"].ToString() + "Hz\n" +

"Work Resolution: " + Screen.PrimaryScreen.WorkingArea.Width + " x " +
Screen.PrimaryScreen.WorkingArea.Height +" pixels\n";

 }

 mainForm.textToSave = "GRAPHICS\n" + rtfGraphicsDetails.Text;

 }

privatevoid GraphicsControl_Resize(object sender, EventArgs e)

 {

//Makes the graphics details control to resize its size as the main control resizes
 rtfGraphicsDetails.Width = this.Width - 24;

 rtfGraphicsDetails.Height = this.Height - 40;

 }
 }

}

63

Appendix F
HardwareInfo class source code

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using System.Management;
using System.IO;

using System.Collections;

using System.Windows.Forms;

namespace AutoSpec

{

publicstaticclassHardwareInfo
 {

///<summary>

/// Retrieving Processor Id.
///</summary>

///<returns></returns>

///

publicstaticString GetProcessorId()

 {

ManagementClass mc = newManagementClass("win32_processor");

ManagementObjectCollection moc = mc.GetInstances();

String Id = String.Empty;
foreach (ManagementObject mo in moc)

 {

 Id = mo.Properties["processorID"].Value.ToString();

break;

 }

return Id;

 }

///<summary>
/// Retrieving HDD Serial No.

///</summary>

///<returns></returns>
publicstaticString GetHDDSerialNo()

 {

ManagementClass mangnmt = newManagementClass("Win32_LogicalDisk");

ManagementObjectCollection mcol = mangnmt.GetInstances();
string result = "";

foreach (ManagementObject strt in mcol)

 {
result += Convert.ToString(strt["VolumeSerialNumber"]);

 }

return result;
 }

///<summary>

/// Retrieving System MAC Address.
///</summary>

///<returns></returns>

publicstaticstring GetMACAddress()

 {

64

ManagementClass mc = newManagementClass("Win32_NetworkAdapterConfiguration");

ManagementObjectCollection moc = mc.GetInstances();
string MACAddress = String.Empty;

foreach (ManagementObject mo in moc)

 {
if (MACAddress == String.Empty)

 {

if ((bool)mo["IPEnabled"] == true) MACAddress = mo["MacAddress"].ToString();

 }
mo.Dispose();

 }

 MACAddress = MACAddress.Replace(":", "");

return MACAddress;

 }
///<summary>

/// Retrieving Motherboard Manufacturer.

///</summary>

///<returns></returns>
publicstaticstring GetBoardMaker()

 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *

FROM Win32_BaseBoard");

foreach (ManagementObject wmi in searcher.Get())

 {

try
 {

return wmi.GetPropertyValue("Manufacturer").ToString();

 }

catch { }

 }

return"Board Maker: Unknown";

 }

///<summary>

/// Retrieving Motherboard Product Id.

///</summary>
///<returns></returns>

publicstaticstring GetBoardProductId()

 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *

FROM Win32_BaseBoard");

foreach (ManagementObject wmi in searcher.Get())

 {

try
 {

return wmi.GetPropertyValue("Product").ToString();

 }

catch { }

65

 }

return"Product: Unknown";

 }
///<summary>

/// Retrieving CD-DVD Drive Path.

///</summary>

///<returns></returns>
publicstaticstring GetCdRomDrive()

 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *

FROM Win32_CDROMDrive");

foreach (ManagementObject wmi in searcher.Get())

 {

try

 {
return wmi.GetPropertyValue("Drive").ToString();

 }

catch { }

 }

return"CD ROM Drive Letter: Unknown";

 }

///<summary>

/// Retrieving BIOS Maker.
///</summary>

///<returns></returns>

publicstaticstring GetBIOSmaker()
 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *
FROM Win32_BIOS");

foreach (ManagementObject wmi in searcher.Get())

 {
try

 {

return wmi.GetPropertyValue("Manufacturer").ToString();

 }

catch { }

 }

return"BIOS Maker: Unknown";

 }
///<summary>

/// Retrieving BIOS Serial No.

///</summary>

66

///<returns></returns>

publicstaticstring GetBIOSserNo()
 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *
FROM Win32_BIOS");

foreach (ManagementObject wmi in searcher.Get())

 {
try

 {

return wmi.GetPropertyValue("SerialNumber").ToString();

 }

catch { }

 }

return"BIOS Serial Number: Unknown";

 }
///<summary>

/// Retrieving BIOS Caption.

///</summary>
///<returns></returns>

publicstaticstring GetBIOScaption()

 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *

FROM Win32_BIOS");

foreach (ManagementObject wmi in searcher.Get())

 {

try
 {

return wmi.GetPropertyValue("Caption").ToString();

 }

catch { }

 }

return"BIOS Caption: Unknown";
 }

///<summary>

/// Retrieving System Account Name.
///</summary>

///<returns></returns>

publicstaticstring GetAccountName()
 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("root\\CIMV2", "SELECT *

FROM Win32_UserAccount");

foreach (ManagementObject wmi in searcher.Get())

 {
try

 {

67

return wmi.GetPropertyValue("Name").ToString();

 }
catch { }

 }

return"User Account Name: Unknown";

 }

///<summary>

/// Retrieving Physical Ram Memory.
///</summary>

///<returns></returns>

publicstaticstring GetPhysicalMemory(bool justSize=false)
 {

ManagementScope oMs = newManagementScope();

ObjectQuery oQuery = newObjectQuery("SELECT * FROM Win32_PhysicalMemory");
ManagementObjectSearcher oSearcher = newManagementObjectSearcher(oMs, oQuery);

ManagementObjectCollection oCollection = oSearcher.Get();

long MemSize = 0;
long speed = 0;

long mCap = 0;

string manufac = "";
// In case more than one Memory sticks are installed

foreach (ManagementObject obj in oCollection)

 {
mCap = Convert.ToInt64(obj["Capacity"]); //memory capacity

 MemSize += mCap; //adds up memory capacity

manufac = obj["Manufacturer"].ToString(); //gets manufacturer
speed += Convert.ToInt64(obj["Speed"]); //adds up the speed

 }

 MemSize = (MemSize / 1024) / 1024;

return (MemSize / 1024.0) + (justSize ? "" :"GB (" + manufac + ") ");
 }

///<summary>

/// Retrieving No of Ram Slot on Motherboard.
///</summary>

///<returns></returns>

publicstaticstring GetNoRamSlots()
 {

int MemSlots = 0;

ManagementScope oMs = newManagementScope();
ObjectQuery oQuery2 = newObjectQuery("SELECT MemoryDevices FROM

Win32_PhysicalMemoryArray");

ManagementObjectSearcher oSearcher2 = newManagementObjectSearcher(oMs, oQuery2);
ManagementObjectCollection oCollection2 = oSearcher2.Get();

foreach (ManagementObject obj in oCollection2)

 {
 MemSlots = Convert.ToInt32(obj["MemoryDevices"]);

 }

return MemSlots.ToString();
 }

//Get CPU Temprature.

///<summary>
/// method for retrieving the CPU Manufacturer

/// using the WMI class

///</summary>

68

///<returns>CPU Manufacturer</returns>

publicstaticstring GetCPUManufacturer()
 {

string cpuMan = String.Empty;

//create an instance of the Managemnet class with the
//Win32_Processor class

ManagementClass mgmt = newManagementClass("Win32_Processor");

//create a ManagementObjectCollection to loop through

ManagementObjectCollection objCol = mgmt.GetInstances();
//start our loop for all processors found

foreach (ManagementObject obj in objCol)

 {
if (cpuMan == String.Empty)

 {

// only return manufacturer from first CPU
cpuMan = obj.Properties["Manufacturer"].Value.ToString();

 }

 }

return cpuMan;
 }

///<summary>
/// method to retrieve the CPU's current

/// clock speed using the WMI class

///</summary>
///<returns>Clock speed</returns>

publicstaticint GetCPUCurrentClockSpeed()

 {
int cpuClockSpeed = 0;

//create an instance of the Managemnet class with the

//Win32_Processor class

ManagementClass mgmt = newManagementClass("Win32_Processor");
//create a ManagementObjectCollection to loop through

ManagementObjectCollection objCol = mgmt.GetInstances();

//start our loop for all processors found
foreach (ManagementObject obj in objCol)

 {

if (cpuClockSpeed == 0)
 {

// only return cpuStatus from first CPU

cpuClockSpeed = Convert.ToInt32(obj.Properties["CurrentClockSpeed"].Value.ToString());

 }
 }

//return the status

return cpuClockSpeed;
 }

///<summary>

/// method to retrieve the network adapters
/// default IP gateway using WMI

///</summary>

///<returns>adapters default IP gateway</returns>

publicstaticstring GetDefaultIPGateway()
 {

//create out management class object using the

//Win32_NetworkAdapterConfiguration class to get the attributes
//of the network adapter

ManagementClass mgmt = newManagementClass("Win32_NetworkAdapterConfiguration");

//create our ManagementObjectCollection to get the attributes with

69

ManagementObjectCollection objCol = mgmt.GetInstances();

string gateway = String.Empty;
//loop through all the objects we find

foreach (ManagementObject obj in objCol)

 {
if (gateway == String.Empty) // only return MAC Address from first card

 {

//grab the value from the first network adapter we find

//you can change the string to an array and get all
//network adapters found as well

//check to see if the adapter's IPEnabled

//equals true
if ((bool)obj["IPEnabled"] == true)

 {

gateway = obj["DefaultIPGateway"].ToString();
 }

 }

//dispose of our object

obj.Dispose();
 }

//replace the ":" with an empty space, this could also

//be removed if you wish
gateway = gateway.Replace(":", "");

//return the mac address

return gateway;
 }

///<summary>

/// Retrieve CPU Speed.
///</summary>

///<returns></returns>

publicstaticdouble? GetCpuSpeedInGHz()
 {

double? GHz = null;

using (ManagementClass mc = newManagementClass("Win32_Processor"))
 {

foreach (ManagementObject mo in mc.GetInstances())

 {
 GHz = 0.001 * (UInt32)mo.Properties["CurrentClockSpeed"].Value;

break;

 }

 }
return GHz;

 }

///<summary>
/// Converts size of memory location to string

///</summary>

///<param name="size"></param>
///<returns></returns>

publicstaticstring SizeToString(long size)

 {

string strSize = "";
if (size < 1024)

strSize = size + " bytes";

elseif (size > 1024 && size < (1024 * 1024))
strSize = Math.Round(size / 1024.0, 2) + " KB";

elseif (size > (1024 * 1024) && size < (1024 * 1024 * 1024))

strSize = Math.Round(size / (1024.0 * 1024.0), 2) + " MB";

70

elseif (size > (1024 * 1024 * 1024) && size < (1024.0 * 1024 * 1024 * 1024))

strSize = Math.Round(size / (1024.0 * 1024.0 * 1024.0), 2) + " GB";
else

strSize = Math.Round(size / (1024.0 * 1024.0 * 1024.0 * 1024.0), 2) + " TB";

return strSize;
 }

///<summary>

///Retrieves the total size of local hard disk
///</summary>

///<returns></returns>

publicstaticstring GetTotalLocalDiskSize()
 {

long diskSize = 0;

DriveInfo[] dInfo = DriveInfo.GetDrives();
foreach (DriveInfo di in dInfo)

 {

if (di.DriveType == DriveType.Fixed && di.IsReady)

diskSize += di.TotalSize;
 }

return SizeToString(diskSize);

 }

///<summary>

///Retrieves the total size and used size of local hard disk
///</summary>

///<returns></returns>

publicstaticlong[] GetTotalLocalDiskSizes()
 {

long[] diskSizes = { 0, 0 };

DriveInfo[] dInfo = DriveInfo.GetDrives();
foreach (DriveInfo di in dInfo)

 {

if (di.DriveType == DriveType.Fixed && di.IsReady)
 {

diskSizes[0] += di.TotalSize;

diskSizes[1] += di.TotalFreeSpace;
 }

 }

return diskSizes;

 }

///<summary>

///Retrieves All removable drives in the system.
///</summary>

///<returns></returns>

publicstaticDriveInfo[] GetRemovableDrives()
 {

DriveInfo[] ListDrives = DriveInfo.GetDrives();

ArrayList removableDrives = newArrayList();

foreach (DriveInfo di in ListDrives)
 {

if (di.DriveType == DriveType.Removable)

removableDrives.Add(di);
 }

return (DriveInfo[])removableDrives.ToArray(typeof(DriveInfo));

 }

71

///<summary>
/// Retrieving Audio Info.

///</summary>

///<returns></returns>
publicstaticstring GetAudioInfo()

 {

string AudioDetails = "";

ManagementObjectSearcher mo = newManagementObjectSearcher("select * from
Win32_SoundDevice");

foreach (ManagementObject soundDevice in mo.Get())
 {

//String deviceId = soundDevice.GetPropertyValue("DeviceId").ToString();

String name = soundDevice.GetPropertyValue("Name").ToString();

 AudioDetails += name + "\n\n";

break;

 }
return AudioDetails;

 }

///<summary>
/// Gets basic monitor information

///</summary>

///<returns>graphicInfo</returns>
publicstaticstring GetGraphicsBasicInfo()

 {

string graphicInfo = "";
ManagementClass mgmt = newManagementClass("Win32_DisplayConfiguration");

//create our ManagementObjectCollection to get the attributes with

ManagementObjectCollection objCol = mgmt.GetInstances();

string gateway = String.Empty;
//loop through all the objects we find

foreach (ManagementObject obj in objCol)

 {
graphicInfo += obj["DeviceName"].ToString() + " (" +

Screen.PrimaryScreen.WorkingArea.Width +

" x " + Screen.PrimaryScreen.WorkingArea.Height + " @ " +
obj["DisplayFrequency"].ToString() + "Hz)";

 }
return graphicInfo;

 }

 }

}

72

Appendix G
Hard Drive control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;
using System.Collections;

namespace AutoSpec
{

publicpartialclassHDControl : UserControl

 {
publicfrmMain mainForm = newfrmMain();

public HDControl()

 {

InitializeComponent();
 }

privatevoid HDControl_Load(object sender, EventArgs e)
 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("SELECT * FROM

Win32_DiskDrive");

foreach (ManagementObject hd in searcher.Get())

 {
try

 {

//displays the hard disk details

 rtfHDdetails.Text += "Media Type: " +
hd.GetPropertyValue("MediaType").ToString() + "\nSerial Number: " +

hd.GetPropertyValue("SerialNumber").ToString() + "\nName: " +

hd.GetPropertyValue("Name").ToString() + "\nTotal Cylinders: " +
hd.GetPropertyValue("TotalCylinders").ToString() + "\nTotal Size: " +

HardwareInfo.GetTotalLocalDiskSize() +"\n" +

"Total Heads: " + hd.GetPropertyValue("TotalHeads").ToString() + "\nTotal Sectors: " +
hd.GetPropertyValue("TotalSectors").ToString() + "\nTotal Tracks:" +

hd.GetPropertyValue("TotalTracks").ToString() + "\nTracks Per Cylinder: " +

hd.GetPropertyValue("TracksPerCylinder").ToString() + "\n\n" ;

 }
catch (Exception ex) { }

 }

 mainForm.textToSave = "HARD DRIVES\n" + rtfHDdetails.Text;
 }

privatevoid HDControl_Resize(object sender, EventArgs e)
 {

 rtfHDdetails.Width = this.Width - 24;

 rtfHDdetails.Height = this.Height - 40;
 }

 }

classHardDrive

 {

73

privatestring model = null;

privatestring type = null;
privatestring serialNo = null;

ArrayList hdCollection = newArrayList();

publicstring Model
 {

get { return model; }

set { model = value; }

 }
publicstring Type

 {

get { return type; }
set { type = value; }

 }

publicstring SerialNo
 {

get { return serialNo; }

set { serialNo = value; }

 }

public HardDrive()

 {

ManagementObjectSearcher searcher = newManagementObjectSearcher("SELECT * FROM

Win32_DiskDrive");

/*foreach (ManagementObject wmi_HD in searcher.Get())

 {
 HardDrive hd = new HardDrive();

 hd.Model = wmi_HD["Model"].ToString();

 hd.Type = wmi_HD["InterfaceType"].ToString();

hdCollection.Add(hd);
 }*/

searcher = newManagementObjectSearcher("SELECT * FROM Win32_PhysicalMedia");

int i = 0;

foreach (ManagementObject wmi_HD in searcher.Get())
 {

// get the hard drive from collection

// using index

HardDrive hd = (HardDrive)hdCollection[i];

// get the hardware serial no.

if (wmi_HD["SerialNumber"] == null)
 hd.SerialNo = "None";

else

 hd.SerialNo = wmi_HD["SerialNumber"].ToString();

 ++i;

 }

 }

 }

}

74

Appendix H
Motherboard Control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassMotherboardControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public MotherboardControl()

 {

InitializeComponent();

 }

publicstring getMotherboardDetails()

 {
SelectQuery Sq = newSelectQuery("Win32_MotherboardDevice");

ManagementObjectSearcher objOSDetails = newManagementObjectSearcher(Sq);

ManagementObjectCollection osDetailsCollection = objOSDetails.Get();
StringBuilder sb = newStringBuilder();

foreach (ManagementObject mo in osDetailsCollection)

 {
//this portion of the program formats the motherboard details of the system

sb.AppendLine(string.Format("Caption: {0}", (string)mo["Caption"]));

sb.AppendLine(string.Format("Availability: {0}", mo["Availability"].ToString()));

sb.AppendLine(string.Format("InstallDate: {0}",
Convert.ToDateTime(mo["InstallDate"]).ToString()));

sb.AppendLine(string.Format("CreationClassName : {0}", (string)mo["CreationClassName"]));

sb.AppendLine(string.Format("Description: {0}", (string)mo["Description"]));
sb.AppendLine(string.Format("DeviceID : {0}", (string)mo["DeviceID"]));

sb.AppendLine(string.Format("ErrorCleared: {0}", (string)mo["ErrorCleared"]));

sb.AppendLine(string.Format("ErrorDescription : {0}", (string)mo["ErrorDescription"]));
sb.AppendLine(string.Format("PrimaryBusType : {0}", (string)mo["PrimaryBusType"]));

sb.AppendLine(string.Format("RevisionNumber : {0}", (string)mo["RevisionNumber"]));

sb.AppendLine(string.Format("LastErrorCode : {0}", (string)mo["LastErrorCode"]));

sb.AppendLine(string.Format("Name : {0}", (string)mo["Name"]));
sb.AppendLine(string.Format("SecondaryBusType : {0}", (string)mo["SecondaryBusType"]));

sb.AppendLine(string.Format("PNPDeviceID: {0}", (string)mo["PNPDeviceID"]));

sb.AppendLine(string.Format("PowerManagementSupported : {0}",
mo["PowerManagementSupported"]).ToString());

sb.AppendLine(string.Format("Status : {0}", (string)mo["Status"]));

sb.AppendLine(string.Format("SystemCreationClassName : {0}",
(string)mo["SystemCreationClassName"]));

sb.AppendLine(string.Format("SystemName: {0}", (string)mo["SystemName"]));

 }
return sb.ToString();

 }

privatevoid MotherboardControl_Load(object sender, EventArgs e)

75

 {

 rtfDetails.Text = getMotherboardDetails(); //displays the motherboard details
 rtfDetails.Text += "\n\nBIOS:\n\tMaker: " + HardwareInfo.GetBIOSmaker();

 rtfDetails.Text += "\n\tCaption: " + HardwareInfo.GetBIOScaption()

+"\n\tSerial no: " + HardwareInfo.GetBIOSserNo();
 mainForm.textToSave = "MOTHERBOARD\n" + rtfDetails.Text;

 }

privatevoid MotherboardControl_Resize(object sender, EventArgs e)
 {

 rtfDetails.Width = this.Width - 24;

 rtfDetails.Height = this.Height - 40;
 }

 }

}

76

Appendix I
Network Control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec
{

publicpartialclassNetworkControl : UserControl

 {
publicfrmMain mainForm = newfrmMain();

public NetworkControl()

 {

InitializeComponent();
 }

privatevoid NetworkControl_Load(object sender, EventArgs e)
 {

 rtfNetworkDetails.Text = !AS.HasConnection() ? "You are not connected to the

internet\n" :"You are connected to the internet\n";
//create out management class object using the

//Win32_NetworkAdapterConfiguration class to get the attributes

//of the network adapter
ManagementClass mgmt = newManagementClass("Win32_NetworkAdapterConfiguration");

//create our ManagementObjectCollection to get the attributes with

ManagementObjectCollection objCol = mgmt.GetInstances();

string gateway = String.Empty;
//loop through all the objects we find

foreach (ManagementObject obj in objCol)

 {
//rtfNetworkDetails.Text += obj["Description"].ToString() + "\n";

 }
ManagementObjectSearcher mo = newManagementObjectSearcher("select * from

Win32_ComputerSystem");

foreach (ManagementObject osDesc in mo.Get())
 {

//displays the network details

 rtfNetworkDetails.Text +="Username: " +
osDesc.GetPropertyValue("UserName").ToString() + "\n" +

"Workgroup: " + osDesc.GetPropertyValue("Workgroup").ToString() + "\n" +

"DNS Host name: " + osDesc.GetPropertyValue("DNSHostName").ToString() + "\n" +
"Domain: " + osDesc.GetPropertyValue("Domain").ToString() + "\n" +

"Description: " + osDesc.GetPropertyValue("Description").ToString() + "\n\n";

 }

 rtfNetworkDetails.Text += "\n\nNetwork Adapters:\n\t";

mgmt = newManagementClass("Win32_NetworkAdapter");

//create our ManagementObjectCollection to get the attributes with

77

ManagementObjectCollection objCol2 = mgmt.GetInstances();

//loop through all the objects we find
foreach (ManagementObject obj in objCol2)

 {

try
 {

 rtfNetworkDetails.Text += "Name: " + obj["Name"].ToString() + "\n\t";

 rtfNetworkDetails.Text += "Device ID: " + obj["DeviceID"].ToString()

+ "\n\t";
//rtfNetworkDetails.Text += "Service name: " + obj["ServiceName"].ToString() + "\n\t";

 rtfNetworkDetails.Text += "Manufacturer: " +

obj["Manufacturer"].ToString() + "\n\n\t";
 }

catch (Exception ex) { }

 }

 mainForm.textToSave = "NETWORK\n" + rtfNetworkDetails.Text;

 }

privatevoid NetworkControl_Resize(object sender, EventArgs e)

 {

 rtfNetworkDetails.Width = this.Width - 24;
 rtfNetworkDetails.Height = this.Height - 40;

 }

 }

}

78

Appendix J
Optical drives control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO;
namespace AutoSpec

{

publicpartialclassOpticalDrivesControl : UserControl
 {

publicfrmMain mainForm = newfrmMain();

public OpticalDrivesControl()
 {

InitializeComponent();

 }

privatevoid OpticalDrivesControl_Load(object sender, EventArgs e)
 {

bool _empty_drives = true;

DriveInfo[] ListDrives = DriveInfo.GetDrives(); //retrieves all the drives in the system
if (ListDrives.Length == 0)

 {

 rtfOpticalDrivesDetails.Text = "No optical disk drives detected";
return;

 }

int d = 0;
foreach (DriveInfo Drive in ListDrives)

 {

 ++d;

if (Drive.DriveType == DriveType.Removable && Drive.IsReady) //seperates removable drives
from other drives

 {

//displays the optical drives
 rtfOpticalDrivesDetails.Text += "Drive " + d + ": " + Drive.Name +

(Drive.IsReady ? "\n\tLabel: " + Drive.VolumeLabel +"\n" : "\n");

 rtfOpticalDrivesDetails.Text += "\tTotal space: " +
HardwareInfo.SizeToString(Drive.TotalSize) + "\n\tUsed Space: " +

HardwareInfo.SizeToString(Drive.TotalSize - Drive.TotalFreeSpace) + "\n";

 rtfOpticalDrivesDetails.Text += "\tFree space: " +

HardwareInfo.SizeToString(Drive.TotalFreeSpace) + "\n\n";
 _empty_drives = false;

 }

 }
if(_empty_drives)

 rtfOpticalDrivesDetails.Text = "No optical disk drives detected";

 mainForm.textToSave = "OPTICAL DRIVES\n" + rtfOpticalDrivesDetails.Text;
 }

privatevoid OpticalDrivesControl_Resize(object sender, EventArgs e)
 {

 rtfOpticalDrivesDetails.Width = this.Width - 24;

 rtfOpticalDrivesDetails.Height = this.Height - 40;

 }

79

Appendix K
Operating system control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassOSControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public OSControl()

 {

InitializeComponent();

 }

privatevoid tmrOS_Tick(object sender, EventArgs e)

 {

 }

privatevoid OSControl_Load(object sender, EventArgs e)

 {

string osBits = Environment.Is64BitOperatingSystem ? " 64-bit" : " 32-bit";
 Microsoft.VisualBasic.Devices.ComputerInfo ci =

newMicrosoft.VisualBasic.Devices.ComputerInfo();

 rtfOSDetails.Text = ci.OSFullName + "" + osBits + "\nVersion: " +

ci.OSVersion + "\n";
ManagementObjectSearcher mo = newManagementObjectSearcher("select * from

Win32_OperatingSystem");

foreach (ManagementObject osDesc in mo.Get())

 {

//Displays the operating systems details
 rtfOSDetails.Text += "Manufacturer: " +

osDesc.GetPropertyValue("Manufacturer").ToString() + "\n" +

"Code Set: " + osDesc.GetPropertyValue("CodeSet").ToString() + "\n" +

"Computer name: " + osDesc.GetPropertyValue("CSName").ToString() + "\n" +
"Registered user: " + osDesc.GetPropertyValue("RegisteredUser").ToString() + "\n" +

"Serial number: " + osDesc.GetPropertyValue("SerialNumber").ToString() + "\n" +

"System Drive: " + osDesc.GetPropertyValue("SystemDrive").ToString() + "\n" +
"Installation Date: " + FormatDate(osDesc.GetPropertyValue("InstallDate").ToString()) +

"\n";

 }

 mainForm.textToSave = "OPERATING SYSTEM\n" + rtfOSDetails.Text;
 }

privatevoid OSControl_Resize(object sender, EventArgs e)

 {

80

//Makes the os details control to resize its size as the main control resizes

 rtfOSDetails.Width = this.Width - 24;
 rtfOSDetails.Height = this.Height - 40;

 }

privatestring FormatDate(string strDate) //this method formats the install date

 {

string y = strDate.Substring(0, 4);

string m = strDate.Substring(4, 2);
string d = strDate.Substring(6, 2);

return d + "/" + m + "/" + y;

 }
 }

}

81

Appendix L
Performance control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Collections;

using System.Windows.Forms;
using System.Diagnostics;

using System.Management;

namespace AutoSpec

{

publicpartialclassPerformanceControl : UserControl
 {

ArrayList possibleSolutions = newArrayList();

publicfrmMain mainForm = newfrmMain();

public PerformanceControl()
 {

InitializeComponent();

 }

privatedouble PercentageHDUsage()

 {
long[] hdSize = HardwareInfo.GetTotalLocalDiskSizes(); //gets logical disk sizes

returnMath.Round((double)hdSize[1] / hdSize[0], 2) * 100; //percentate cpu usage

 }

privatebool IsSmallRamSize()

 {

ManagementScope oMs = newManagementScope();
ObjectQuery oQuery = newObjectQuery("SELECT * FROM Win32_PhysicalMemory");

ManagementObjectSearcher oSearcher = newManagementObjectSearcher(oMs, oQuery);

ManagementObjectCollection oCollection = oSearcher.Get();

long MemSize = 0;

long speed = 0;
long mCap = 0;

string channel = "";

// In case more than one Memory sticks are installed

foreach (ManagementObject obj in oCollection)
 {

mCap = Convert.ToInt64(obj["Capacity"]); //memory capacity

 MemSize += mCap; //adds up memory capacity
 }

 MemSize = (MemSize / 1024) / 1024; //converts from byte to mega byte

return (MemSize / 1024) < 2;
 }

//Gets all the running applications

privatestring[] getRunningApps()

 {

ArrayList runningApps = newArrayList();

82

Process[] processes = Process.GetProcesses();

foreach (Process process in processes)
 {

if (process.MainWindowTitle.Trim().Length > 0) //helps to seperate open apps from

background processes
runningApps.Add(process.MainWindowTitle);

 }

return (string[])runningApps.ToArray(typeof(string)); //returns an array of running apps

 }

privatevoid PerformanceControl_Resize(object sender, EventArgs e)

 {
 rtfPerformanceDetails.Width = this.Width - 24;

 rtfPerformanceDetails.Height = this.Height - 40;

 }

privatevoid tmrPerformance_Tick(object sender, EventArgs e)

 {

/*long ramSize = Convert.ToInt64(HardwareInfo.GetPhysicalMemory(true));
 PerformanceCounter performanceCounter = new PerformanceCounter("Processor",

"% Processor Time", "_Total");//"Process", "Private Bytes", "Explorer");

 lblPerformance.Text = performanceCounter.CounterName + ": " +
performanceCounter.RawValue;

 label1.Text = GetAvailableRam()/1024 + "GB" + "/" +

HardwareInfo.GetPhysicalMemory();
 //lblProcessMaxSpeed.Text = HardwareInfo.GetCPUCurrentClockSpeed() + "";*/

 }

privatevoid tmrPerformance2_Tick(object sender, EventArgs e)

 {

long ramSize = Convert.ToInt64(HardwareInfo.GetPhysicalMemory(true));

possibleSolutions = newArrayList();
string runningApps = "";

string runningProcesses = "";

 rtfPerformanceDetails.Text = "CAUSES OF CPU LOW PERFORMANCE\n\tToo many
background processes";

possibleSolutions.Add("Use the Task Manager to kill unnecessary background processes");

if (PercentageHDUsage() > 95) //checks for hard disk 95% usage
 {

 rtfPerformanceDetails.Text += "\n\tLow available space in hard disk";

possibleSolutions.Add("Free up your hard disk to boost performance");

 }
if (TotalRunningApps() > 20) //checks whether running applications are greater than 20

 {

 rtfPerformanceDetails.Text += "\n\tToo many open applications running";
possibleSolutions.Add("Close some of the applications running");

 }

if (IsSmallRamSize()) //checks for small size RAM
 {

 rtfPerformanceDetails.Text += "\n\tLow RAM size";

possibleSolutions.Add("Upgrade your RAM size to at least 2GB");

 }
if (possibleSolutions.Count > 0)

 {

 rtfPerformanceDetails.Text += "\nSOLUTIONS\n\t";
for (int i = 0; i < possibleSolutions.Count; i++)

 {

83

 rtfPerformanceDetails.Text += possibleSolutions[i].ToString() +

"\n\t";
 }

 }

 rtfPerformanceDetails.Text += "\n\nRUNNING PROGRAMS:\n\t";
Process[] processes = Process.GetProcesses();

foreach (Process process in processes)

 {

if (process.MainWindowTitle.Trim().Length > 0)
runningApps += process.MainWindowTitle + "\n\t"; //collects running apps

else

runningProcesses += process.ProcessName + "\n\t"; //collects running background processes
 }

 rtfPerformanceDetails.Text += runningApps + "\nBACKGROUND PROCESSES\n\t" +

runningProcesses; //prints the running programs
 mainForm.textToSave = "PERFORMANCE\n" + rtfPerformanceDetails.Text;

tmrPerformance2.Stop();

 tmrPerformance2.Interval = 30000;

tmrPerformance2.Start();
 }

publiclong GetAvailableRam()
 {

PerformanceCounter ramCounter = newPerformanceCounter("Memory", "Available MBytes");

return ramCounter.RawValue;
 }

privateint TotalRunningApps() //returns total running apps
 {

ArrayList runningApps = newArrayList();

Process[] processes = Process.GetProcesses();

foreach (Process process in processes)
 {

if (process.MainWindowTitle.Trim().Length > 0)

runningApps.Add(process.MainWindowTitle);
 }

return runningApps.Count;

 }

 }

}

84

Appendix M
Peripherals control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassPeripheralsControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public PeripheralsControl()

 {

InitializeComponent();

 }

privatevoid PeripheralsControl_Load(object sender, EventArgs e)

 {
ManagementObjectSearcher mo = newManagementObjectSearcher("select * from

Win32_PointingDevice");

foreach (ManagementObject keybdDevice in mo.Get())

 {

String deviceId = keybdDevice.GetPropertyValue("DeviceID").ToString(); //gets keyboard ID
String name = keybdDevice.GetPropertyValue("Name").ToString(); //gets keyboard name

 rtfPeripheralDetails.Text += "Name: " + name + "\nDevice ID" + deviceId +

"\nManufacturer: " +
keybdDevice.GetPropertyValue("Manufacturer") + "\nDevice Type: Keyboard\nDevice

Interface: " +

GetInterfaceType(Convert.ToInt32(keybdDevice.GetPropertyValue("DeviceInterface"))) +
"\n\n";

}

 rtfPeripheralDetails.Text += "\nPrinters\n\t";

mo = newManagementObjectSearcher("select * from Win32_Printer");

foreach (ManagementObject printerDevice in mo.Get())
 {

String deviceId = printerDevice.GetPropertyValue("DeviceID").ToString(); //gets printer

ID
String name = printerDevice.GetPropertyValue("Name").ToString(); //gets printer name

//displays the printer details

 rtfPeripheralDetails.Text += "Name: " + name + "\n\tDevice ID" + deviceId
+ "\n\tDriver Name: " +

printerDevice.GetPropertyValue("DriverName") + "\n\tPort Name: " +

printerDevice.GetPropertyValue("PortName") + "\n\n\t";
 }

 mainForm.textToSave = "PERIPHERALS\n" + rtfPeripheralDetails.Text;

 }

85

//helps to get the keyboard interface type

privatestring GetInterfaceType(int t)
 {

if (t == 1)

return"Other";

if (t == 2)

return"Unknown";

if (t == 3)

return"Serial";

if (t == 4)
return"PS/2";

if (t == 5)

return"Infrared";
if (t == 6)

return"HP-HIL";

if (t == 7)

return"Bus Mouse";
if (t == 8)

return"ADB (Apple Desktop Bus)";

if (t == 160)
return"Bus Mouse DB-9";

if (t == 161)

return"Bus Mouse Micro-DIN";
if (t == 162)

return"USB";

elsereturn"Unknown";
 }

privatevoid PeripheralsControl_Resize(object sender, EventArgs e)

 {
 rtfPeripheralDetails.Width = this.Width - 24;

 rtfPeripheralDetails.Height = this.Height - 40;

 }
 }

}

86

Appendix N
RAM control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Management;

namespace AutoSpec

{
publicpartialclassRAMControl : UserControl

 {

publicfrmMain mainForm = newfrmMain();
public RAMControl()

 {

InitializeComponent();

 }

privatevoid RAMControl_Load(object sender, EventArgs e)

 {
ManagementObjectSearcher mo = newManagementObjectSearcher("select * from

Win32_PhysicalMemory");

foreach (ManagementObject ram in mo.Get())

 {

String manu = ram.GetPropertyValue("Manufacturer").ToString(); //gets the manufacturer
of a RAM

String name = ram.GetPropertyValue("Name").ToString(); //gets the name of a RAM

//displays the RAM details

 rtfRamDetails.Text += "Name: " + name + "\nManufacturer: "+ manu +
"\nModel: " + ram.GetPropertyValue("Model")+ "\n";

 rtfRamDetails.Text += "Data Width: " +

ram.GetPropertyValue("DataWidth").ToString() + "\nCapacity: " +
HardwareInfo.GetPhysicalMemory() +

"\nSpeed: " + ram.GetPropertyValue("Speed") + "\n";

 }
 mainForm.textToSave = "RAM\n" + rtfRamDetails.Text;

 }

privatevoid RAMControl_Resize(object sender, EventArgs e)
 {

 rtfRamDetails.Width = this.Width - 24;

 rtfRamDetails.Height = this.Height - 40;
 }

 }

}

87

Appendix O
Summary control source code

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Drawing;

using System.Data;
using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO;
using System.Management;

namespace AutoSpec
{

publicpartialclassSummaryControl : UserControl

 {
publicfrmMain mainForm = newfrmMain();

public SummaryControl()

 {

InitializeComponent();
 }

privatevoid picOperatingSystem_Click(object sender, EventArgs e)
 {

mainForm.LoadOS();

 }

privatevoid picCPU_Click(object sender, EventArgs e)

 {
mainForm.LoadCPU();

 }

privatevoid picRAM_Click(object sender, EventArgs e)
 {

mainForm.LoadRAM();

 }

privatevoid picMotherboard_Click(object sender, EventArgs e)

 {
mainForm.LoadMotherboard();

 }

privatevoid picGraphics_Click(object sender, EventArgs e)
 {

mainForm.LoadGraphics();

 }

privatevoid picHardDrives_Click(object sender, EventArgs e)

 {
mainForm.LoadHD();

 }

privatevoid picOpticalDrives_Click(object sender, EventArgs e)

 {

mainForm.LoadOpticalDrives();

 }

88

privatevoid picAudio_Click(object sender, EventArgs e)
 {

mainForm.LoadAudio();

 }

privatevoid tmrSummary_Tick(object sender, EventArgs e)

 {

string osBits = Environment.Is64BitOperatingSystem ? " 64-bit" : " 32-bit"; //detects

os bits 32 or 64

 Microsoft.VisualBasic.Devices.ComputerInfo ci =
newMicrosoft.VisualBasic.Devices.ComputerInfo();

 Microsoft.VisualBasic.Devices.Computer computer =

newMicrosoft.VisualBasic.Devices.Computer();
 lblOS.Text = ci.OSFullName + osBits; //displays operating system summary

 lblRAM.Text = HardwareInfo.GetPhysicalMemory(); //displays RAM summary

 lblHardDrives.Text = HardwareInfo.GetTotalLocalDiskSize(); //displays hard

disk summary
 lblMotherboard.Text = HardwareInfo.GetBoardMaker(); //displays motherboard

summary

 lblAudio.Text = HardwareInfo.GetAudioInfo(); ////displays audio summary
 lblGraphics.Text = HardwareInfo.GetGraphicsBasicInfo(); //displays graphics

summary

DriveInfo[] dList = HardwareInfo.GetRemovableDrives();
string drives = "";

if (dList.Length > 0)

 {
foreach (DriveInfo di in dList)

 {

drives += di.Name + "\n";

 }
 lblOpticalDrives.Text = drives;

 }

else
 lblOpticalDrives.Text = "No optical disk drives detected";

 mainForm.summary = "SUMMARY\nOperating System: " + lblOS.Text + "\n\nCPU: " +

lblCPU.Text + "\n\nRAM: " + lblRAM.Text +
"Motherboard: " + lblMotherboard.Text + "\n\nGraphics: " + lblGraphics.Text + "\n\nHard

Drives: " + lblHardDrives.Text +

"\n\nOptical Drives: " + lblOpticalDrives.Text + "\n\nAudio: " + lblAudio.Text;

 }

privatevoid SummaryControl_Load(object sender, EventArgs e)

 {

string cpu = "";
using (ManagementObjectSearcher win32Proc = newManagementObjectSearcher("select * from

Win32_Processor"),

 win32CompSys = newManagementObjectSearcher("select * from

Win32_ComputerSystem"),
 win32Memory = newManagementObjectSearcher("select * from

Win32_PhysicalMemory"))

 {
foreach (ManagementObject obj in win32Proc.Get())

 {

string clockSpeed = obj["CurrentClockSpeed"].ToString(); //current clock speed

89

string procName = obj["Name"].ToString(); //name of processor

string manufacturer = obj["Manufacturer"].ToString(); //gets the manufacturer of the
processor

string version = obj["Version"].ToString();

cpu += procName;// +"\n" + manufacturer + "\n" + version;
 }

 }

 lblCPU.Text = cpu;

 }

 }

}

